Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Морская вода как коррозионная среда

    Коррозионная стойкость нержавеющих сталей в морской воде во многом зависит от их структуры. Стали мартенситного класса, содержащие 12-13 % Сг и 0,1-0,5 % С, обладают хорошей коррозионной стойкостью во многих средах, но в морской воде подвергаются заметной коррозии. Использование мартенситных сталей в морской воде и средах, содержащих хлориды, нецелесообразно из-за их склонности к локальной коррозии. [c.20]


    Использование мартенситных сталей в морской воде и средах, содержащих хлориды, нецелесообразно из-за склонности к локальной коррозии, хотя коррозионная стойкость этих сталей может быть несколько повышена увеличением содержания хрома и меди. [c.24]

    Кислород, как известно, играет двойственную роль в коррозии нержавеющих сталей в электролитах (например, в морской воде). Окислительная среда необходима для сохранения пассивности нержавеющих сталей. Эта же самая окислительная среда необходима для образования и сохранения питтингов в нержавеющих сталях. Кислород часто действует как деполяризатор иа активно-пассивные элементы, образовав-щиеся при нарушении пассивности в определенном месте или области. Хлор-ионы (имеющиеся в морской воде в изобилии) особенно эффективно нарушают эту пассивность. Таким образом, эта двойственная роль кислорода может быть использована для объяснения неопределенного и неустойчивого коррозионного поведения нержавеющих сталей в морской воде. [c.313]

    Морская вода, коррозионные среды, водяной пар [c.195]

    Большое влияние на склонность металлов и сплавов к коррозионному растрескиванию оказывает температура среды. Некоторые металлы растрескиваются прн нормальной температуре среды (латуни в содержащем аммиак воздухе, дюралюминий и сплавы титана в морской воде). Коррозионное растрескивание большинства металлов и сплавов протекает прп температурах ниже 100 °С. [c.452]

    Наука о коррозии и защите металлов изучает взаимодействие металлов с коррозионной средой, устанавливает механизм этого взаимодействия и его общие закономерности. Своей конечной практической целью учение имеет защиту металлов от коррозионного разрушения при их обработке и эксплуатации металлических конструкций в атмосфере, речной и морской воде, водных растворах кислот, солей и щелочей, грунте, продуктах горения топлива и т. д. [c.10]

    Никель обладает высокой стойкостью в морских атмосферах [39]. В то же время в условиях погружения в морскую воду коррозионное поведение никеля может быть различным. В движущейся воде пассивность металла может сохраняться, а в неподвижной воде наблюдается склонность к местному разрушению пассивной пленки, в результате чего возникает питтинг [40]. В основном никель используется в качестве одного из компонентов сплавов, применяемых в морских условиях. Хорошей стойкостью к морским средам обладают широко применяемые сплавы никель — медь, например Монель 400, а также сплавы системы медь — никель. [c.75]


    Высокая коррозионная к эрозионная стойкость в щелочах, слабых растворах кислот, серной кислоте любой концентрации при температуре более 323 К, в морской воде, в среде перегретого водяного пара. Имеет высокий коэффициент термического расширения, может быть парамагнитным при низком содержании хрома [c.193]

    Щ коррозию при трении (коррозионная эрозия) — разрушение металла, вызываемое одновременным воздействием коррозионной среды и трения (например, разрушение шейки вала при трении о подшипник омываемый морской водой)  [c.14]

    Коррозионная стойкость оловянистых бронз немного выше стойкости меди в ряде агрессивных сред, в частности в серной кислоте невысоких концентраций и в других слабокислых средах, в морской воде, в щелочных растворах (исключая аммиач-1И)1е) и др, [c.250]

    В настоящее время в Советском Союзе основной объем нефти добывают, применяя для заводнения нефтяных пластов сточную и минерализованную воду различных эксплуатационных горизонтов, а также пресную и морскую воду, которые транспортируют по трубопроводам большой протяженности. Концентрация водородных ионов в этих водах, как правило, отвечает нейтральным или близким к нейтральным средам, а один из основных коррозионных агентов в них — кислород. [c.160]

    Морская вода — это коррозионная среда, обладающая достаточно высокой электропроводностью— 2,5 Ю- — 3,0 10 Ом/см. Высокая коррозионная активность морской воды связана в основном с наличием в ней значительного количества растворенных солей и их химическим составом (табл. VI. 1). [c.184]

    При электрохимической защите от коррозии резервуаров, сосудов—реакторов, транспортных устройств или трубопроводов в химической и нефтеперерабатывающей промышленности часто приходится иметь дело со средами высокой коррозионной активности. Здесь встречаются среды начиная от обычной пресной и более или менее загрязненной речной, солоноватой и морской воды (часто применяемые для охлаждения) или реакционных растворов и сточных вод химического производства и кончая крепкими рассолами, которые нужно хранить и транспортировать при добыче нефти. Целесообразно ли даже при наличии существенных коррозионных влияющих факторов опробовать электрохимическую защиту и какой именно способ лучше всего можно применить — это зависит от конкретных условий в каждом отдельном случае. Так, при наличии материалов, поддающихся пассивации в соответствующих средах, кроме известной катодной защиты может ставиться вопрос и о применимости анодной защиты. Этот способ можно успешно применить в тех случаях, когда потенциал свободной коррозии ввиду слишком слабого окислительного действия среды располагается в области активной коррозии, но при наложении анодного тока от постороннего источника может быть легко смещен в область пассивности и поддержан на этом уровне (см. раздел 2.3.1.2 и рис. 2.12). [c.378]

    Поскольку примеси в металле играют роль локальных элементов, можно ожидать, что их уменьшение значительно повысит коррозионную стойкость металла. Поэтому, например, алюминий или магний высокой чистоты более устойчивы к коррозии в морской воде или кислотах, чем технические металлы, а специально очищенный цинк менее растворим в соляной кислоте, чем технический. Однако ошибочно полагать, что чистые металлы вообще не подвержены коррозии, как считалось много лет назад, когда была предложена первая электрохимическая теория. Как мы увидим далее, локальные элементы возникают также при изменениях температуры или других параметров среды. Например, на поверхности железа или стали, покрытой пористым слоем ржавчины (оксиды железа), в аэрированной воде отрицательными электродами являются участки поверхности железа в порах оксидного слоя, а положительными — участки ржавчины, открытые для соприкосновения с кислородом. Отрицательные и положительные электродные участки меняются местами и перемещаются по поверхности в ходе коррозионного процесса. [c.22]

    Коррозионная усталость проявляется в разнообразных водных средах, в отличие от коррозионного растрескивания, вызываемого определенными, специфичными для каждого металла ионами. Под действием коррозионной усталости происходит разрушение стали в пресной и морской воде, в конденсатах продуктов сгорания, в других распространенных химических средах при этом чем выше скорость общей коррозии, тем быстрее металл разрушается вследствие коррозионной усталости. [c.157]

    Коррозионная усталость часто бывает причиной неожиданного разрушения вибрирующих металлических конструкций, рассчитанных на надежную работу в воздушной среде при нагрузках ниже предела выносливости. Например, неточно центрированный вал гребного винта на судне будет нормально работать до тех пор, пока не появится течь и участок вала, выдерживающий максимальные знакопеременные нагрузки, не окажется в морской воде. Тогда в течение нескольких дней могут образоваться трещины, из-за которых вал быстро разрушится. Стальные штанги насосов для откачки нефти из буровых скважин имеют ограниченный срок службы ввиду коррозионной усталости, возникающей в буровых водах. Несмотря на применение высокопрочных среднелегированных сталей и увеличение толщины штанг, разрушения этого типа приносят миллионные убытки нефтяной промышленности. Металлические тросы также нередко разрушаются вследствие коррозионной усталости. Трубы, по которым подаются пар или горячие жидкости, могут разрушаться подобным образом, вследствие периодического расширения и сжатия (термические колебания). [c.157]


    Взаимодействие цементного камня и бетона с агрессивной средой, например морской водой, углекислотой, ЗОг и НгЗ, а также ионами водорода и 8042-, приводит к коррозии сначала поверхностного слоя, затем коррозионный фронт перемещается внутрь материала. [c.371]

    Одним из важнейших свойств титана является его высокая коррозионная стойкость во многих агрессивных средах, которая обусловливается быстрым образованием на его поверхности тонкой инертной пленки из двуокиси, которая взаимодействует с нижележащим слоем титана с образованием низших оксидов, растворимых в металле, благодаря чему защитная пленка прочно связывается с поверхностью. Наиболее устойчив титан в водных растворах нейтральных солей. По коррозионной стойкости в морской воде и горячих концентрированных растворах хлоридов титан значительно превосходит все известные нержавеющие стали и цветные металлы. Если же коррозия титана имеет место, то она почти всегда протекает однородно, без локализации по точкам, язвам или границам зерен. [c.88]

    Электрический ток, протекающий через металлическое сооружение, смонтированное в почве, грунте, морской воде или другой электропроводящей среде, влияет на скорость коррозионного процесса при его отекании с металла в электролит или грунт. Возникновение таких токов связано с работой электрических устройств, использующих в качестве токопровода землю или заземленный металл. В земле появляются электрические токи, сила и направление которых могут изменятся во времени в зависимости от множества факторов. Эти токи получили название блуждающих. [c.21]

    Высокохромистый чугун обладает высокой химической стойкостью в ряде агрессивных сред в азотной, серной, фосфорной кислотах, в растворах щелочей, солей, морской воде и др. Высокая коррозионная стойкость высокохромистого чугуна объясняется тем, что хром (в пределах 15—30%) образует пассивирующую пленку. [c.138]

    Сплавы обладают высокой коррозионной стойкостью в морской воде и в других средах средней и повышенной агрессивности [c.152]

    Сплавы обладают высокой коррозионной стойкостью в морской воде и других агрессивных средах [c.152]

    Одним из важнейших качеств титана является его высокая коррозионная стойкость во многих агрессивных средах, обусловленная образованием на его поверхности тонкой инертной пленки из диоксида, взаимодействующего с нижележащим слоем титана с образованием низших оксидов, растворимых в металле, благодаря чему защитная пленка прочно связывается с поверхностью. Наиболее устойчив титан и водных растворах нейтральных солей. По коррозионной стойкости в морской воде и горячих концентрированных растворах хлоридов титан значительно превосходит все известные нержавеющие стали и цветные металлы. Если и происходит коррозия титана, то почти всегда она протекает равномерно, без локализации по точкам, язвам или границам зерен. Наряду с Э1ИМ ценность титана как конструкционного материала обусловлена его значительной удельной прочностью (отношение прочности к плотности), которая у титана больше, чем у любого другого металла. [c.274]

    Стали марки Саникро 28 — весьма стойкий материал для теплообменников, охлаждаемых морской водой. Бесшовные трубы из стали марки Саникро 28 дешевле титановых и превосходят большинство материалов по коррозионной стойкости в различных средах. [c.22]

    Однако в некоторых средах титан обладает более высокой коррозионной стойкостью, чем тугоплавкие металлы (кроме Та). Это окислительные среды, в особенности щелочные растворы [50], растворы хлоридов и другие среды, содержащие хлор. Впрочем, полная нечувствительность к коррозионному воздействию относительно слабых в химическом отношении сред (например, морской воды, промышленных атмосфер и др.) и хорошие технологические свойства Т1 обеспечили возможность широкого применения этого металла в различных отраслях промышленности, в том числе и при создании архитектурных сооружений, памятников и тд. Отсутствие необходимости защиты от коррозии (например, окраски) создает значительные преимущества при эксплуатации сооружений, в которых использован титан. [c.52]

    Несмотря на все большее расширение применения алюминиевых сплавов для морских сооружений, все же остается актуальной проблема изыскания конструкционных материалов, физико-химические свойства которых отвечали бы требованиям, предъявляемым нефтегазопромысловым сооружениям при эксплуатации в открытом море. Наиболее перспективный материал для этой цели — титан. Исследования некоторых титановых сплавов в Черном море на различных глубинах (7, 27, 42, 80 м) показали высокую стойкость исследованньгх сплавов на всех глубинах, и их скорость коррозии не превышала 0,01 г/(м2 ч), в то время как нержавеющие стали типа 18-9 были подвержены питтингу глубиной 2,5 мм после экспозиции в течение 21 мес. С увеличением глубины погружения образцов коррозионная стойкость повьииалась, что объясняется понижением температуры и более низкой концентрацией кислорода. Титан обладает очень высокой стойкостью не только в обычных морских средах, но также в загрязненных водах, в морской воде, содержащей хлор, аммиак, сероводород, двуокись углерода, в горячей морской воде. Титан выдерживает очень высокие скорости потока морской воды После 30-суточных испытаний при скорости потока 36,Ь. i, с бьип лолч чены следующие результаты  [c.25]

    На воздухе или в среде водяного пара бронзы устойчивы при температурах до 300° С. Оловянистые и алюминиевые бронзы выдерживают температуру до 700° С. Сплав, содержащий примерно 307о никеля так называемый мельхиор, устойчив в концентрированном растворе КаОН при температуре до 80° С, Для соляной кислоты, умеренно высоких температур и проточной морской воды коррозионно-стойким, не подверженным аммиачному растрескиванию, является сплав с 15% никеля. [c.36]

    Титан — химический элемент IV группы периодической системы — относится к переходным металлам, отличается сравнительно небол1 Шой плотностью (4,5 г/см ), малым температурным коэффициентом линейного расширения и коррозионной стойкостью в морской воде, агрессивных средах и различных климатических условиях. В зависимости от легирования и термообработки временное сопротивление титановых сплавов изменяется от 490 до 1372 МПа. Титан может работать в широком интервале температур от —253 до 500 °С. [c.343]

    Пресная и, в большой степени, морская вода сильно снижают усталостную прочность стали. Сплавы никеля, медь и сплавы меди хорошо сопротивляются коррозионной усталости в различных водных средах. Это обусловлено их более высоким сопротивлением коррозии в этих средах. Чистые металлы (ие склонные к коррозии под напряжением) подвержены коррозн-оппой усталости. [c.455]

    Для защиты высокопрочных сплавов наиболее широко применяют плакирование. В качестве плакирующего слоя используют чистый алюминий или сплав алюминия с 1% 2п. Толщина плакирующего слоя составляет от 2 до 7,5% от толщины основного металла. Плакирование листов и плит происходит в процессе горячей прокатки, для производства труб с внутренней плакировкой применяют полые слитки, в которые вставляют трубу из алюминия. При прессовании слой алюминия прочно приваривается к основному металлу. Плакирующий слой является обычно анодным по отношению к сердцевине, поэтому его защитное действие носит не только изолирующий, но и электрохимический характер, в результате чего даже те участки алюминиевого сплава, на которых плакировка нарушена, защищены от коррозии. Эффект электрохимической защиты тем выше, чем больше электропроводность среды. Так, при разрушении плакирующего слоя по длине образца на 25 мм потеря прочности сплава Д16Т в морской воде составила 5%, а в 0,01%-ном растворе хлористого натрия — 35%. В меньшей степени плакирующий слой защищает электрохимически в условиях атмосферной коррозии. В хорошо проводящей коррозионной среде эффективность электрохимической защиты плакирующего слоя снижается по мере уменьшения разности потенциалов между металлами плакировки и металлом защищаемого сплава. [c.62]

    Расчетное значение потенциала алюминия лежит между потенциалами магния и цинка. В воде или грунтах алюминий имеет склонность к пассивации с соответствующим сдвигом потенциала к потенциалу стали. Тогда он перестает выполнять функцию протектора. Для предотвращения пассивации в околоэлектрод-ное пространство можно вводить специальное вещество для создания среды, содержащей хлориды засыпка). Однако это может служить только временной мерой. В морской воде пассивацию лучше всего предупреждать, используя сплавы. Например, сплавление алюминия с 0,1 % Sn с последующей термообработкой при 620 °С в течение 16 ч и закалкой в воде для удержания олова в состоянии твердого раствора очень сильно уменьшает анодную поляризацию в хлоридных растворах [6]. Коррозионный потенциал такого сплава в 0,1т растворе Na l составляет—1,2 В по сравнению с —0,5 В для чистого алюминия. Некоторые алюминиевые протекторы содержат 0,1 % Sn и 5 % Zn [7, 8]. Протекторы с 0,6 % Zn, 0,04 % Hg и 0,06 % Fe при испытаниях в морской воде в течение 254 дней работали с выходом по току 94 % (2802 А-ч/кг). В настоящее время в США на производство протекторов из таких сплавов ежегодно расходуют примерно [c.219]

    Легирование никеля медью несколько повьпиает его коррозионную стойкость. Сплавы никеля, содержащие 30% меди (например, монель-металл. никель - основа, 27.. 29% меди, 2...3% железа, 1.2... 1.8% марганца), обладаюг высокой коррозионной стойкостью в пресной и морской воде, растворах серной (до 20%), плавиковой и ортофосфорной кислот. Легирование никеля хромом заметно повышает стойкость в окисл1ггельных средах, однако увеличивается чувствительность к воздействию анионов хлора. Совместное легирование никеля хромом и молибденом повышает устойчивость сплавов в окислительных и восстановительных средах. [c.17]

    Источником кислорода служит не только воздушная среда, но и процесс фотосинтеза высших растений, который в некстгорых случаях приводит к локальному повьппению концентрации растворенного в воде кислорода и усилению действия коррозионных пар дифференциальной аэрации. Содержание кислорода в морской воде достигает 12 мг/л. Наибольшее количество кислорода содержится в поверхностных слоях воды. С увеличением глубины оно уменьшаете , а начиная с определенной глубины, может опять возрастать. Так, например, в воде Тихого океана содержание кислорода составляет, г/л на поверхности - 5,8 на глубине 700 м - 0,25 1500 м - 1,00. В воде Атлантического океана этот показатель соответственно равен 4,59 3,11 и 5,73 г/л [28].  [c.14]

    В расчетах на прочность технологической аппаратуры конструктору часто приходится учитывать общую равномерную по поверхности коррозию металлов и сплавов, для чего необходимо знать проницаемость материала в мм/год при заданных рабочих условиях агрессивной среды (концентрация, температура, давление). Она учитывается при выборе величины прибавки на коррозию к рассчитанной толщине стенки аппарата. В ряде случаев при конструировании технологической аппаратуры необходимо учитывать также и другие виды коррозионного разрушения материалов. Например, в химических аппаратах, выполненных из кислотостойкой стали и находящихся под постоянным повышенным давлением, при совместном действии коррозионной среды и растягивающих напряжений в ряде случаев наблюдается коррозионное растрескивание металла, происходящее обычно внезапно без видимых изменений материала, Это явление не имеет места при наличии в металле напряжений сжатия. Кроме того, коррозионное растрескивание происходит в небольшом количестве агрессивных сред и зависит от величины давления и температуры, Известно, что ускоренное растрескивание аппаратуры из кислостойких сталей, находящейся под постоянно действующей нафузкой, имеет место в растворах Na I, Mg l,, 7,т)С , Ь1С1, Н 8, морской воде и т,д. Латуни обнаруживают склонность к коррозионному растрескиванию в среде аммиака. [c.9]

    На поверхности титана образуется плотная и быстро самовосстанавливающаяся (даже при ограниченном содержании кислорода в прилегающей среде) защитная оксидная пленка, очень стойкая к коррозионным и эрозионным воздействиям. Благодаря этому трубки из титана нечувствительны к действию хлоридов, сульфидов (сероводорода) и аммиака. Титан пассивен к продуктам жизнедеятельности микроорганизмог , не подвержен эрозии под действием содержащейся и паре влаги и эрозионно-коррозионному износу при содержании в воде абразивных примесей (песка, золы) и при кавитации со стороны входа воды, даже при больших ее скоростях (до 6—8 м/с). Все это обеспечивает продолжительную службу трубок из титана при использовании их в загрязненных, особенно морских, водах и в зоне воздухоохладителя конденсатора (в случаях применения в основном пучке трубок из медных сплавов). [c.56]

    Типичными примерами толстослойных покрытий являются полимерные покрытия и покрытия на основе битумных мастик. Толщина таких покрытий превышает 1 мм. Битумные материалы наносят в расплавленном виде. Покрытие труб полиэтиленом (ПЭ) осуществляется экструзией или с применением клея, обеспечивающего сцепление полиэтилена со сталью, или путем наплавления порошкового полиэтилена [,2, 3]. В последнее время находит применение еще одна система толстослойного покрытия полиуретан — каменноугольный пек это покрытие обычно наносят распылением в виде двухкомпонентной смеси [4]. Основной областью применения толстослойных покрытий являются подземные и морские трубопроводы и подземные резервуары-хранилища. Все покрытия имеют общее назначение — разъединить защищаемую поверхность и коррозионную среду. Полностью разъединить компоненты, участвующие в реакции в среде, в принципе невозможно, поскольку все органические материалы покрытий, хотя и в различной степени, поглощают воду и пропускают водяной пар и кислород. Кроме того, нельзя исключить и возможность механического повреждения покрытий. Основные требования к покрытиям, которые должны обеспечивать длительную защиту от коррозии, сводятся к следующему [5, 6]  [c.146]

    Первые сведения о коррозионной стойкости V в растворах соляной, серной и азотной кислот различных концентраций, а также в хлорном железе, в растворе Na l и в морской воде опубликованы А. Кинцелем [44]. Более подробные исследования, в основном подтвердившие данные А. Кин-целя, были проведены в 1961 г. [45]. Коррозионная стойкость нелегированного V в холодных и подогретых (до 60-70° С) соляной и серной кислотах с концентрацией примерно до 20% соответствует 1 баллу. В 5%-ном хлорном железе он нестоек, а в морской воде абсолютно стоек. В окислительных средах ванадий корродирует с большой скоростью в органических кислотах, перечисленных выше, он весьма устойчив. [c.51]


Смотреть страницы где упоминается термин Морская вода как коррозионная среда: [c.28]    [c.12]    [c.417]    [c.117]    [c.305]    [c.425]    [c.478]    [c.18]    [c.84]   
Смотреть главы в:

Кислородная коррозия оборудования химических производств -> Морская вода как коррозионная среда


Кислородная коррозия оборудования химических производств (1985) -- [ c.13 ]




ПОИСК





Смотрите так же термины и статьи:

Коррозионная pH среды

Морская вода

Морская среда



© 2025 chem21.info Реклама на сайте