Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрохимическая коррозия и защита подземных трубопроводов

    Особенности электрохимической защиты промысловых трубопроводов и обсадных колонн скважин от подземной коррозии [c.190]

    Защита подземных трубопроводов от коррозии осуществляется как изоляционными покрытиями, так и средствами электрохимической защиты. [c.17]

    Применять методы электрохимической защиты от коррозии начали в первую очередь в химической промышленности около 15 лет назад вначале нерешительно, как это было и с применением катодной защиты подземных трубопроводов около 30 лет назад. Препятствие к более щирокому применению заключалось главным образом в том, что внутренняя защита должна в большей мере выполняться по индивидуальным проектам, чем простая наружная защита подземных сооружений. В связи с возросшей важностью обеспечения повышенной надежности производственных установок, с ужесточением требований к коррозионной стойкости и укрупнением деталей и узлов установок начал проявляться интерес к электрохимической внутренней защите. Хотя на вопрос об экономичности защиты нельзя дать общего ответа (см. раздел 22.4), все же очевидно, что расходы на электрохимическую защиту будут меньше расходов на высококачественную и надежную футеровку (на покрытия) или на коррозионностойкие материалы. При этом анализе нельзя не отметить, что наде кная эксплуатация очень крупных выпарных аппаратов для щелочных растворов вообще стала возможной только благодаря применению внутренней анодной защиты, поскольку достаточно эффективный отжиг для снятия внутренних напряжений крупных резервуаров практически неосуществим, а конструктивные и эксплуатационные напряжения вообще не могут быть устранены. [c.400]


    При проектировании защиты подземных трубопроводов от электрохимической коррозии на стадии "Проект" разрешается проводить расчеты сметной стоимости по укрупненным показателям. В случае расчета лишь катодной защиты используется стоимость одной катодной установки, что позволяет значительно упростить расчеты. Методика упрощенного расчета, впервые предложенная нами, приводится ниже. [c.22]

    Во всех промышленно развитых странах все большее значение приобретает проблема защиты металла от коррозии. Среди различных способов, используемых для ее решения, особое место занимают системы электрохимической (катодной) защиты, широко применяемые для предотвращения разрушения металлических сооружений, эксплуатируемых в условиях природных вод и грунтов. Область применения катодной защиты весьма широка она охватывает подземные водопроводы, газо-, нефте- и продуктопроводы и металлические трубопроводы других назначений, проложенные в земле, подземные кабели связи, силовые кабели с металлической оболочкой и броней, кабели, проложенные в трубах, заполненных сжатым газом или маслом, различные резервуары — хранилища и цистерны, речные и морские суда, портовое оборудование, установки питьевой воды и различные аппараты химической промышленности, нуждающиеся во внутренней защите. [c.13]

    Катодные установки применяют в следующих случаях при наличии остаточных положительных потенциа лов на трубопроводе после ввода в эксплуатацию электродренажных установок этим обеспечивается более надежная защита подземного трубопровода от коррозии поляризованные электродренажи включаются только в момент появления анодной зоны на трубопроводе, в остальное время трубопровод электрохимически не защищается  [c.170]

    Основным методом электрохимической защиты от подземной (почвенной) коррозии металлических сооружений из углеродистых сталей является катодная зашита магистральных и промысловых нефтегазопроВ уктопроводов, городских подземных трубопроводов и коммуникаций, нефтехранилищ и нефтебаз, компрессорных станций, обсадных колон и скважинного оборудования и т.п. [c.4]

    ЭЛЕКТРОХИМИЧЕСКАЯ КОРРОЗИЯ И ЗАЩИТА ПОДЗЕМНЫХ ТРУБОПРОВОДОВ [c.7]

    Строительные нормы предусматривают защиту стальных магистральных трубопроводов от почвенной коррозии при помощи изоляционных покрытий и средств электрохимической защиты,. а также защиту подземных трубопроводов и наземных переходов от атмосферной коррозии. [c.182]


    Электрохимическая защита. Этот метод защиты основан на тормо-н ии анодных или катодных реакций коррозионного процесса. (Электрохимическая защита осуществляется присоединением к защ1р щаемой конструкции металла с более отрицательным значением электродного потенциала — протектора, а также катодной или анодной поляризацией за счет извне приложенного тока Наиболее применима электрохимическая защита в коррозионных средах с хорошей электрической проводимостью. Катодная поляризация используется для защиты от коррозии подземных трубопроводов, кабелей. Катодную защиту применяют также к шлюзовым воротам, подводным лодкам, водным резервуарам, морским трубопроводам и оборудованию химических заводов. [c.221]

    Предусмотренные проектами мероприятия по защите от коррозии строящихся подземных трубопроводов, наладка и включение в работу устройств электрохимической защиты должны осуществляться до сдачи трубопроводов в эксплуатацию, но не позднее чем через 6 мес после укладки трубопроводов в грунт. [c.200]

    Сущность НТД или ППО, назначение, область применения. Предназначена для контроля эффективности электрохимической защиты подземных трубопроводов от коррозии, состояния изоляционного покрытия труб и проведения текущего и среднего ремонта средств ЭХЗ и электроснабжения. [c.167]

    Электрохимическая защита от коррозии подземного трубопровода заключается в катодной поляризации трубопровода с защитной разностью потенциалов трубопровод — земля. В местах соприкосновения металла трубопровода с грунтом ток из грунта входит в трубопровод, поляризуя и защищая его таким образом от коррозии. [c.160]

    Несмотря на указанные недостатки усиленный дренаж получил достаточно широкое применение. Во-первых, организации, эксплуатирующие подземные сети, прежде всего заинтересованы в защите своих коммуникаций, а предприятия, эксплуатирующие рельсовый транспорт, как правило, не имеют своих служб по борьбе с коррозией, а потому у них нет данных о скорости коррозионных повреждений рельсовой сети. Во-вторых, в проектах на строительство новой рельсовой сети часто отсутствует раздел Электрохимическая защита подземных сооружений . Поэтому, например, после пуска городского трамвая часто возникают коррозионные повреждения внутриквартальных трубопроводов, кабелей, опор и кроме того приходится завышать мощности внутриквартальных СКЗ для погашения наведенных на сооружениях блуждающих токов. [c.51]

    Электрохимические методы. К ним относится протекторная защита и электрозащита. Протекторная защита применяется в тех случаях, когда защищаемая конструкция (подземный трубопровод, корпус судна) находится в среде электролита (морская вода, подземные, почвенные воды и т. д.). Защищаемую конструкцию соединяют с протектором — металлом, имеющим более отрицательный потенциал, чем у защищаемого металла. В качестве протектора при защите стальных изделий обычно используют магний, алюминий, цинк и их сплавы. В процессе коррозии протектор служит анодом и разрушается, тем самым предохраняя от разрушения конструкцию.  [c.234]

    Защитные мероприятия делятся на активные и пассивные. Электрохимическая защита представляет собой важную и обширную часть защитных мероприятий, характеризующихся активным вмешательством в процессы коррозии. Пассивные защитные мероприятия заключаются в разъединении защищаемой поверхности и агрессивной коррозионной среды при помощи покрытия. Любые возможные активные и пассивные защитные мероприятия могут проводиться и отдельно, однако сочетание обоих способов защиты дает ряд преимуществ и в некоторых случаях даже настоятельно необходимо. Катодная защита и нанесение покрытий почти идеально дополняют друг друга. Это обусловливается, во-первых, экономическими причинами в принципе можно активно защищать и сооружения без покрытий, но затраты на защитную установку и эксплуатационные расходы при этом будут бесспорно высокими, так как потребуется большой катодный защитный ток. Кроме того, в случае подземных трубопроводов имеются и технические соображения, по которым катодная защита поверхностей без покрытия нежелательна. В первую очередь имеется в виду влияние на близрасположенные металлические конструкции, вызывающее опасность их коррозии. Такая опасность может оказаться весьма значительной, и предотвратить ее техническими средствами либо вообще невозможно, либо очень трудно. [c.145]

    Широко используемая на практике катодная (или электродренаж-ная) защита от почвенной коррозии (или электрокоррозии) подземных трубопроводов позволяет подавить электрохимическую гетерогенность внешней поверхности, вызванную неоднородной деформацией трубы или сварными соединениями. Для внутренней поверхности трубопроводов такая возможность отсутствует. Однако электрохимическая поляризация внешней поверхности трубопровода окажет некоторое влияние на внутреннюю поверхность, если транспортируемая среда обладает электропроводностью (водоводы, рассолопроводы, пульпопроводы, трубопроводы промстоков, газоконденсата, сильно обводненной нефти и др.). [c.213]


    Во втором томе (том 1 - Современные системы защиты от электрохимической коррозии подземных коммуникаций вышел в 1999 г.) кратко рассматриваются теоретические вопросы защиты от электрохимической коррозии подземных трубопроводов. [c.2]

    Электрохимическая защита применяется обычно для сооружений химической промышленности, на транспорте, но в основном для подземных трубопроводов. Значительное увеличение протяженности трубопроводов и количества стали, заложенной в землю на один километр трассы, в результате использования труб большого диаметра, а также уменьшение толщины стенок вследствие повышения прочности трубной стали особенно остро ставят вопрос о защите трубопроводов от подземной коррозии. [c.65]

    Катодная защита, открытая Деви, известна с 1824 г. Она заключается в уменьшении скорости электрохимической коррозии путем катодной поляризации или с помощью вспомогательных электродов (протекторов), являющихся анодами по отношению к корродирующей системе. Катодная защита применяется в основном для подводных или подземных сооружений — морских конструкций, пирсов, трубопроводов. Она может быть осуществлена с помощью внешних источников тока или с помощью жертвенных анодов — протекторов. [c.127]

    Электрохимическая защита металла является эффективным средством борьбы с коррозией в емкостях, подземных трубопроводах и кабелях и других металлических подземных сооружениях. Для ее осуществления применяют главным образом катодную и протекторную защиту. [c.364]

    Эти покрытия, как было найдено, обеспечивают высокую степень защиты от коррозии поверхности Металлов, в том числе черных, меди и других им подобных. Эти покрытия обеспечивают анодную защиту металлической поверхности, на которую они наносятся. Покрытия предназначены для подземных трубопроводов, корпусов судов, морских бурильных платформ и т.п. Значения электрохимических потенциалов некоторых сплавов (по н.к.э.) в сравнении р цинком показывают их способность к анодной защите (табл. 11.14). [c.87]

    Часто для предохранения металлов от коррозии применяются комбинированные методы, т. е. методы, сочетающие в себе два или несколько различных способов защиты. Так, для увеличения сохранности подземных трубопроводов, кроме механических средств защиты (обмотка изоляционными материалами, покрытие битумными композициями и т. п.), одновременно налагается катодная защита, предохраняющая металл от коррозии в местах нарушений сплошности покровного изоляционного слоя. При покраске металлических изделий в состав красителей вводят, как один из ингредиентов, ингибитор коррозии, обеспечивая тем самым помимо механической также и электрохимическую защиту. Наложение катодной поляризации повышает тормозящий эффект ингибиторов в нейтральных и кислых средах. В первом случае увеличение эффективности защиты связано главным образом с подщелачиванием раствора вблизи поверхности металла, благодаря чему облегчается образование труднорастворимых соединений. В кислых средах повышение эффективности защиты является результатом увеличения адсорбируемости органических катионов при смещении потенциала металла в отрицательную сторону, т. е. увеличении его отрицательного заряда. Некоторые органические вещества, не влияющие на процесс коррозии железа в нейтральных средах, становятся эффективными ингибиторами при наложении катодной поляризации. [c.485]

    Если с технико-экономической точки зрения обоснована обязательная защита (нанесение на трубопровод эффективных изоляционных покрытий и электрохимическая защита на всем протяжении трубопровода), в этом случае при проектировании защиты определять коррозионную активность грунта нет необходимости. ГОСТ 9.015—74 для магистральных стальных трубопроводов и отводов от них предусматривает защиту от почвенной коррозии изоляционными покрытиями и катодной поляризацией независимо от коррозионной активности грунта. Для защиты от почвенной коррозии других подземных стальных трубопроводов и резервуаров, заглубленных в грунтах весьма высокой, высокой и повышенной коррозионной активности, помимо изоляционных покрытий осуществляют катодную поляризацию сооружений. [c.16]

    Присоединение сильного анода к корродирующей системе (например, к двухэлектродному или многоэлектродному короткозамкнутому гальваническому элементу) оказывает защитное действие на коррозию системы, вызывает торможение работы коррозионных микроэлементов вследствие внешней катодной поляризации. Такое защитное действие присоединенного анода получило название протекторной защиты, а присоединенный электрод называется протектором. Уменьшение скорости электрохимической коррозии может быть достигнуто также при катодной поляризации металла приложенным извне током. Электрохимическая защита (протекторная, приложенная извне током) используется при защите от почвенной коррозии подземных трубопроводов и других сооружений, от коррозии металлов в морской воде и т. п. [c.35]

    Вопросы надежной защиты подземных металлических трубопроводов от коррозии имеют исключительно важное народно-хозяйственное аначение. В настоящее время в СССР нашли широкое практическое применение разнообразные способы защиты подземных трубопроводов от коррозии, в том числе противокоррозионная изоляция, катодная, протекторная и электродренаЖ ная защиты и др. Однако наиболее распространенным способом защиты является тонкослойная изоляция, в основном битумная, Трубопроводы, подверженные воздействию электрохимической коррозии, отделяются от агрессивной окружающей среды (грунта, жидкости) противокоррозионными оболочкам . Но по своим механическим и электрохимическим качествам битумные оболочки, в том виде, в котцром они сейчас применяются, недостаточно надежны. Опыт эксплуатации подземных металлических трубопроводов, покрытых битумной изоляцией, показал, что срок службы ее в большинстве случаев не превышает Ю лет. В то же время срок эксплуатации подземного трубопровода определяется 50—100 годами. Таким образом возникает несоответствие /между сроком эксплуатации трубопровода и сроком службы противокоррозионной изоляции. Поэтому уже в первые годы экоплуатации изолированных трубопроводов приходится вводить дополнительные противокорроз1ионные защитные мероприятия, как например, протекторную и катодную защиты и другие устройства. Помимо битумной изоляции, в настоящее время разрабатываются и начинают применяться другие виды противокоррозионных оболочек, например пластмассовые, асбестоцементные, бетонные, цементнобитумные и др. [c.3]

    Для контроля параметров средств электрохимической защиты подземных металлических сооружений от почвенной коррозии и коррозии, вызываемой блуждающими токами, а также контроля изоляционных покрытий применяют передвижную электроисследо-вательскую лабораторию электрохимической защиты ПЭЛ ЭХЗ. Лабораторию широко используют на магистральных трубопроводах, нефтебазах, подземных хранилищах нефти и газа, нефтяных и газовых промыслах для обследования трубопроводов и обсадных колонн скважин. На основании проведенных измерений и их обработки принимают решение о состоянии покрытия изоляционного или выполняют проектирование и наладку (назначение электрических параметров) электрохимической защиты. Лаборатория ПЭЛ ЭХЗ оборудована генератором постоянного тока с максимальной мощностью = [c.66]

    Рахманкулов Д, Л., Кузнецов М, В,, Габитов А. И., Зенцов В. Н,, Кузнецов А, М. Современные системы защиты от электрохимической коррозии подземных коммуникаций. Т. 1. Катодная защита густоразветвленной сети подземных трубопроводов,- Уфа ГНТИ "Реактив", 1999.- 232 с, [c.128]

    Механическое соединение металлических чаете" подземных сооружений, осуществляемое с п(> мощью изоляционных материалов (отрезков изоляционных труб, муфт, фланцев), препятствующие прохождению электрического тм л из одной части сооружений в другую тМ Защита металлического сооружения от коррозив путем образования на защищаемом металле сооружения отрицательного защитного потенциала по отношению к окружающей коррозионной среде Одновременная защита от коррозии данного подземного металлического сооружения несколькими различными средствами защиты Устройство, обеспечивающее возможность присоединения измерительных приборов к подземному металлическому сооружению Коррозионная характеристика среды, окружающей подземное сооружение, по которой определяется скорость коррозии металла Электрохимическое разрушение металла подземных сооружений, вызванное действием окружающей коррозионной среды (земля, вода), или блуждающих токов, или совместным действием окружающей коррозионной среды и блуждающих токов Величина, характеризующая соотношение положительных и отрицательных импульсов потенциалов трубопровод — земля в зонах действия знакопеременных блуждающих токов. Электрохимическое разрушение металла сооружений, вызванное действием блуждающих токов [c.303]

    Естественно, что в практических условиях электрод сравнения не может быть подведен к границе двойного электрического слоя, он располагается на значительном расстоянии от нее. Поэтому в измеряемую величину включается омическая составляющая разности потенциалов, которая возникает за пределом двойного электрического слоя и электродом сравнения. Это падение напряжения не является перенапряжением, оно не определяет ни характер, ни скорость электродных реакций на металле. Поэтому при измерениях, связанных с контролем минимальных и максимальных поляризационных потенциалов, ладение потенциала за пределами двойного электрического слоя нужно элиминировать (исключать). Присутствие омической составляющей приводит во многих случаях к ошибочным заключениям относительно защищенности трубопровода, например, измеренное значение — 0,85 В относительно медносульфатного электрода сравнения, полученное в результате замеров разности потенциалов труба — земля, не является условием полного подавления процесса коррозии, вследствие того что значительная часть этой разности потенциалов может быть обусловлена омической составляющей. Значение электродного потенциала при этом меньше, чем значение минимального защитного потенциала. На практике при неправильном контроле часто возникают ситуации, при которых трубопроводы обеспечиваются лишь частичной защитой, что приводит к понижению сроков их безаварийной эксплуатации. Практическое решение задачи об исключении омической составляющей во многих случаях вызывает большие трудности даже в лабораторных условиях при электрохимических измерениях на неизолированных небольших электродах в жидких электролитах. Для решения этой задачи было предложено большое количество специальных методов. По методу Берзине и Делахей [77] в мостовой схеме с осциллографом в качестве нуль-индикатора производится определение или компенсация омического падения потенциала. Фальк и Ланге [78, 79], Шульдинер [93, 94], Пионетели [91], Лоренц [87], Фишер [80], Геришер [81], Арнольд и Феттер [70] предложили ряд методов определения омического падения потенциала между электродом и капилляром Лугнна — Габера пз скачка потенциала при включении поляризующего тока. Хиклинг предложил коммутационный метод, при котором потенциал измеряется во время очень кратковременного прерывания тока (84]. Каждый из этих методов применим при определенных условиях проведения лабораторных экспериментов. Однако задача неизмеримо осложняется при необходимости элиминирования омической составляющей при измерениях на протяженных изолированных подземных трубопроводах. Вопрос об исключе- [c.143]

    Наиболее характерны.м катодным процессом в случае подзе.мной коррозии является кислородная деполяризация, хотя в почвах, имеющих сильнокислую реакцию (pH ниже 3), может происходить и водородная деполяризация. Подземные трубопроводы могут корродировать также за счет работы макрогальванических пар, возникающих из-за различной аэрации или неодинакового состава почвы на соседних участках. Грунтовая коррозия очень опасна, так как она часто проявляется в виде глубоких раковин и точечных изъязвлений. Защита от почвенной коррозии осуществляется путем изоляции металлов нефтебитумными композициями, а также липкой полиэтиленовой или полихлорвиниловой лентой в сочетании с электрохимическими. методами защиты. [c.32]


Библиография для Электрохимическая коррозия и защита подземных трубопроводов: [c.129]   
Смотреть страницы где упоминается термин Электрохимическая коррозия и защита подземных трубопроводов: [c.13]    [c.13]    [c.179]    [c.196]    [c.29]    [c.37]    [c.22]    [c.22]    [c.38]    [c.52]   
Смотреть главы в:

Электрохимическая защита от коррозии в примерах и расчетах. Том 2 -> Электрохимическая коррозия и защита подземных трубопроводов

Современные системы защиты от электрохимической коррозии подземных коммуникаций -> Электрохимическая коррозия и защита подземных трубопроводов




ПОИСК





Смотрите так же термины и статьи:

Защита от коррозии

Коррозия электрохимическая

Подземная коррозия

Электрохимическая защита

Электрохимическая защита от коррозии от коррозии

Электрохимическая коррозия подземная



© 2025 chem21.info Реклама на сайте