Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Стереохимия. Теория поля лигандов

    Стереохимия. Теория поля лигандов [c.243]

    Теории кристаллического поля и поля лигандов оказались весьма плодотворными при рассмотрении корреляций между свойствами комплексов переходных металлов, например легкостью образования комплексов и стабильностью уже возникших соединений, реакционноспо-собностью, спектрами поглощения, магнитными свойствами, стереохимией и электронным строением комплексов. Подход Полинга, основанный на методе валентных структур, также не следует отвергать полностью в некоторых отношениях он дополняет теорию поля лигандов. Однако теории кристаллического поля и поля лигандов обладают тем существенным преимуществом, что они более приспособлены для количественного рассмотрения комплексных соединений. В настоящей книге мы коснемся применения теории кристаллического поля только к одному вопросу. [c.170]


    Теорию валентных связей (ВС) широко применяли химики до появления теории поля лигандов, а теория была сформулирована в основном Полингом вскоре после возникновения квантовой механики, и она непосредственно развивала представления Льюиса — Лангмюра — Сиджвика о координационной связи, основанные на квантовой механике. В настоящее время теория валентных связей еще сохраняет некоторое значение для качественного объяснения стереохимии, магнитных и некоторых других свойств комплексных соединений. Учитывая, что с 1935 г. до конца 50-х годов в литературе по координационной химии эту теорию применяли очень широко, здесь необходимо коротко изложить ее, а также установить связь между методом ВС и другими более совершенными методами. [c.107]

    Теория кристаллического поля, развившаяся из простой электростатической модели, может быть применена к комплексам для интерпретации и предсказания наиболее выгодных координационных чисел, стереохимии, путей реакций замещения, спектров поглощения, магнитных и термодинамических свойств. На некоторых из этих вопросов следует остановиться более подробно. В частности, будут рассмотрены стереохимия, магнитные свойства, спектры поглощения и термодинамические свойства комплексных ионов. Это отчетливо покажет, что теория кристаллического поля — более удовлетворительный и более общий метод изучения комплексов, чем метод валентных связей. Однако, придавая особое значение орбиталям и электронам центрального атома, теория кристаллического поля неизбежно должна стать менее точной, когда усиливается роль делокализации электронов и орбиталей лиганда, т. е. при возрастании ковалентности связи. [c.264]

    Приложение теории к вопросам стереохимии основывается на рассмотрении влияния характера заполнения двух наборов -орбит на геометрию комплекса. Если какой-либо из этих наборов пуст, полностью заполнен или заполнен наполовину, распределение заряда является сферически симметричным, и нет оснований предполагать, что лиганды будут располагаться вокруг центрального атома сколько-нибудь иначе, чем в виде симметричного октаэдра. В других случаях неполное заполнение орбит может привести к некоторым искажениям октаэдра. Так, например, многие комплексы трехвалентных хрома и кобальта являются комплексами сильного поля, т. е. низкоспиновыми, и имеют на 4-орбитах соответственно три или шесть электронов. (Конечно, у хрома такое рас- [c.170]


    Количественное предсказание этих свойств затруднено двумя обстоятельствами почти полным отсутствием данных о константах устойчивости и тем, что теория поля лигандов, подобная той, которая развита для ионов переходных металлов, не была разработана для актинидов и лантанидов. Для этого в свою очередь необходимы определенные сведения о стереохимии катионов в их комплексах. По аналогии с ионами переходных металлов можно ожидать, что константы устойчивости будут увеличиваться от Np(III) к Pu(III) или Ат(III), проходя через минимум на m(III) и возрастая до другого максимума на Md(III) или No(III). Опубликованные значения констант устойчивости хелатов с EDTA возрастают от Pu(III) (Ю ), Am(III) (10 ) и m (10 ) до f (10 ), не обнаруживая никакого минимума, однако это может быть следствием малой силы поля данного лиганда. Качественно можно сказать, что хелатообразующие реагенты, о которых известно, что они дают комплексы с актинидами, относятся главным образом к группе реагентов, образующих связи за счет атомов кислорода. Это, например, цитрат, тартрат, лактат, гликолят, а-оксиизобутират, теноилтрифторацетон и EDTA. Все они имеют слабые поля лигандов. [c.312]

    Возможно, наиболее важным понятием, связанным с координационными соединениями и контролирующим их, является льюисовская кислотность иона металла. Это понятие будет расомотре-но в гл. 2, а здесь достаточно сказать, что комплексы непереходных металлов (Ма+, К+, Са +, Мд +, Ва +, А1 +) удерживаются вместе с электростатическими силами и их стереохимия определяется почти исключительно размером лиганда и зарядом на ионе металла. Устойчивости комплексных ионов изменяются параллельно с основностью протонов лигандов, и эффективная роль иона металла подобна таковой протона. Стереохимия комплексов переходных металлов более сложна, и в настоящее время не существует удовлетворительной эмпирической или теоретической модели для детального описания всех аспектов их структуры или даже стереохимии. Для многих из этих металлов ионная модель усложняется тем, что их электронные облака не имеют сферической формы (эффекты кристаллического поля), а также, что подразумевается в их названии, очень значительным отступлением от ионного характера, связанным с переходом от ионной к ковалентной связи. Для таких комплексов важна как нейтрализация зарядов, так и кислотность по Льюису, и для описания химической связи в этих комплексах были развиты теория поля лигандов и метод молекулярных орбиталей [2, 5]. [c.19]

    Теория кристаллического поля, хотя она и пренебрегает орбиталями и электронами лигандов, и теория молекулярных орбита-лей, по-видимому, более пригодны для стереохимических предсказаний. Если сравнивать теорию кристаллического поля и теорию валентных связей, то первая более надежна для описания и предсказания стереохимии молекул. Кроме того, она прнводит к более глубокому пониманию важнейших факторов, обусловливающих стереохимические свойства комплексов переходных металлов. [c.438]

    Рассмотренная в этом разделе трактовка механизма координации в значительной мере исходит от Паулинга В ней основная роль отводится особенностям структуры электронных оболочек атомов-комплексообразователей. Именно свойства агома-комнлексообразо-вателя определяют и величину координационного числа и геометрическую конфигурацию комплекса. Такой подход оправдывается опытом применительно к наиболее типичным комплексообразователям, для которых, действительно, и величина координациопиого числа и геометрическая конфигурация не зависят от природы лигандов. Он является полезным с точки зрения дальнейшего развития стереохимии комплексов, ибо он позволяет заранее предвидеть (в отличив от классической координационной теории и электростатически-поля-ризационных представлений) , какие элёменты могут, при иа.личии к. ч. 4, дать тетраэдрическую или плоскостную конфигурацию. С точки зрения данного подхода плоскостная конфигурация должна быть характерна только для элементов, которые могут образовать [c.301]

    Представления теории кристаллического поля довольно широко привлекаются многими авторами для освеш,ения некоторых вопросов стереохимии комплексных соединений, вопросов кинетики комплексообразования, величин констант нестойкости, окислительно-восстановительпых и кислотно-основных свойств комплексных соединений и т. п. В качестве примера использования соответствующих концепций для стереохимии можно указать на то, что из расчетов величин стабилизации за счет поля лпгандов следует, что и ионы в сильном поле должны преимущественно давать конфигурацию плоского квадрата. Этот вывод довольно хорошо согласуется с тем, что мы знаем о стереохимии N1(11), Р(1(11), Р1(П), Аи(1П) и Си(П). Вместе с тем, как уже указывалось на стр. 323 и сл., для Си(П) вытекает вероятность конфигурации с четырьмя лигандами, лежащими в плоскости квадрата, и двумя менее прочно связанными п более удаленными от центрального иона лигандами, расположенными по оси 2, перпендикулярной к плоскости квадрата. Подобные несимметричные конфигурации должны представлять гораздо более частый случай, чем было принято думать еще несколько лет назад. [c.329]


    При рассмотрении координационной системы в приближении теории кристаллического поля или метода МО ЛКАО все электронные факторькв стереохимии выражаются через изменения энергетических уровней при изменении конфигурации ядер. Одна из таких характеристик — энергия стабилизации кристаллическим полем (табл. IV. 10 и IV. 11), на основе которой можно получить некоторые сравнительные данные по предпочтительной стереохимии и относительной устойчивости (раздел IX. 1). Однако в стереохимии помимо чисто электронного фактора — экстрастабилизации — важную роль играет основной вклад в устойчивость (притяжение ли гандов к центральному иону в представлениях теории кристаллического поля или преобладающий вклад электронов на связывающих орбиталях в методе МО) и отталкивание остовов (раздел IX. 1). Сравним с этой точки зрения различные типы координации одного и того же переходного металла с одним и тем Же типом лигандов. [c.281]

    Стереохимия соединений переходных металлов хорошо объясняется теорией кристаллического поля. Исходя из ТКП можно ожидать, что пра1В Ильное октаэдрическое строение имеют такие комплексы, у которых -орбитали иона-комплексообразователя симметрично заполнены по отношению к октавдрическому шлю лигандов, т. е. все лигаады испытывают одинаковое. ....... [c.124]


Смотреть страницы где упоминается термин Стереохимия. Теория поля лигандов: [c.139]    [c.205]    [c.243]    [c.284]    [c.284]    [c.274]    [c.284]    [c.274]    [c.69]   
Смотреть главы в:

Теоретические основы неорганической химии -> Стереохимия. Теория поля лигандов




ПОИСК





Смотрите так же термины и статьи:

Лиганды стереохимия

Поляна теория

Стереохимия

Стереохимия теории

Теория поля лигандов



© 2024 chem21.info Реклама на сайте