Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярных орбит теория

    ТЕОРИЯ МОЛЕКУЛЯРНЫХ ОРБИТАЛЕЙ 1. Молекулярные орбитали [c.46]

    Нейтральная двухатомная молекула ОН наблюдается в космическом пространстве. Опишите ее электронное строение в рамках теории молекулярных орбиталей, принимая во внимание только 2р-орбитали кислорода и Ь-орбиталь водорода. На молекулярной орбитали какого типа находится неспаренный электрон в молекуле ОН Распределена ли эта орбиталь по атомам кислорода и водорода или же она локализована только на одном из этих атомов Если локализована, то на каком атоме  [c.548]


    Теория поля лигандов рассматривает лиганды не просто как заряженные сферы, а как частицы, имеющие свои собственные орбитали. Согласно представлениям метода делокализованных молекулярных орбита-лей, шесть орбиталей лигандов, которые в первом предположении имеют симметрию а-типа относительно линий связи металл—лиганд, образуют комбинации с шестью из девяти р- и -орбиталей металла, а именно с орбиталями (1 2 5, р Ру и р . Это как раз те же орбитали, которые Полинг использовал для конструирования шести гибридных орбиталей. Составим из них комбинации с шестью атомными орбиталями лигандов при этом мы получим шесть делокализованных связывающих орбиталей и шесть разрыхляющих орбиталей (рис. 20-14). Орбитали и сим- [c.233]

    Карбонилы металлов. В теории поля лигандов принимается, что неподеленные пары электронов СО участвуют в образовании ковалентных связей, переходя на молекулярные орбитали комплекса. В октаэдрическом карбониле Сг(СО)в двенадцать электронов шести молекул СО переходят на о-связывающие орбитали комплекса (а, . Шесть электронов хрома располагаются на tгg- орбиталях (сильное поле, см. рис. 56). Эти орбитали не участвуют в образовании а-связей. Но они могут образовать -л-связи со свободными разрыхляющими л-орбиталями молекулы СО, каждая из трех г -орби-талей с гс -орбиталями двух молекул СО [c.128]

    Молекулярные частицы ВО, СЫ и СО образуют изоэлектронный ряд с 9 валентными электронами. Согласно теории молекулярных орбита- [c.538]

    С точки зрения теории МО, основной причиной, определяющей низкую стабильность нестабилизированных а-комплексов переходных металлов, является малая разница в энергиях высшей занятой -орбитали металла и разрыхляющей а -молекулярной орбитали, связывающей металл с углеродом. Поэтому при незначительном возбуждении электронов металла они переходят на а -разрыхляю-щую орбиталь и деформируют комплекс. При координации металла и электронодонорного органического лиганда возникают дативные связи, благодаря которым разность энергий d- и а -орбиталей увеличивается, а, следовательно, возрастает прочность комплекса. Такая координация снижает влияние и второй причины дестабилизации — перехода электронов с а-связывающей на вакантную -орбиталь, которая при взаимодействии с электронодонорным лигандом оказывается заполненной. [c.103]

    После того как было рассказано о химической связи между неболь-щим числом атомов, объединенных в молекулы, можно перейти к рассмотрению связи в твердых и жидких веществах. Простая, но очень плодотворная теория электрических свойств кристаллов рассматривает весь кристалл как одну большую молекулу, по всему объему которой простираются делокализованные молекулярные орбитали. Она называется зоииой теорией металлов и диэлектриков (изоляторов). [c.601]


    Оба эти недостатка были преодолены в теории молекулярных орбит. Теория молекулярных орбит основывается на представлении, что связь в комплексе осуществляется электронами, находящимися не на атомных орбитах, локализованных только около центрального иона и данной рассматриваемой группы, а комплексообразование происходит в результате образования молекулярных орбит, каждая из которых простирается на все ядра системы. [c.258]

    Такой не связанный с обычной валентной схемой подход электронам молекул осуществлен в теории молекулярных орбит (Гунд, Мулликен, Герцберг). По этой теории электроны не образуют пар, локализованных между двумя атомами, а имеют молекулярные орбиты, охватывающие все атомы. [c.483]

    Порядок Связи в теории молекулярных орбиталей определяется как число электронных пар, заселяющих связывающие молекулярные орбитали, за вычетом числа электронных пар, заселяющих разрыхляющие молекулярные орбитали. Порядки связей, приводимые в табл. П 1.3, находятся в согласии с данными по энергии диссоциации. [c.187]

    Молекулярные орбитали в комплексных соединениях. Поскольку теория кристаллического поля рассматривает центральную частицу комплекса как ион, ее результаты нельзя считать удовлетворительными, когда связь центрального атома с лигандами далека от ионной. [c.225]

    В то время как теория валентных связей сохраняет за атомами, входящими в состав молекулы, их индивидуальность, теория молекулярных орбиталей рассматривает молекулу как единую частицу с помощью основных идей строения атома. Так же как в атоме есть атомные орбитали, так и в молекуле есть молекулярные орбитали различие в том, что молекулярные орбитали многоцентровые. Тем не менее теория молекулярных орбиталей предлагает для электрона в молекуле волновую функцию, подобную волновой функции электрона в атоме. Так, вероятность нахождения электрона в определенной части объема будет пропорциональна и так же, как в атоме, каждая молекулярная орбиталь будет зависеть от ряда квантовых чисел, которые определяют ее энергию и пространственное расположение. Допускается также, что принцип заполнения орбиталей в молекуле такой же, как в атоме, т. е. на каждой молекулярной орбитали могут располагаться два электрона с противоположными спинами, и, начиная с орбиталей самого низкого уровня энергии, электроны один за другим заполняют следующие орбитали. [c.144]

    Теория ковалентной связи. Метод молекулярных орбита- [c.25]

    Ничто не мешает нам осуществить ту же процедуру и получить те же результаты при наличии бесконечной совокупности атомов вместо их конечного числа. Очевидно, все условия делокализации имеются в щелочных металлах, где, как мы видели, каждый центральный атом обладает одним электроном на -орбитали, перекрывающейся заметным образом с орбиталями всех четырнадцати соседних атомов. В этом случае молекулярные орбитали теории валентности становятся орбиталями проводимости в металлах. Все зависит от степени перекрывания, которая, как видно из рис. 12.2 для частного примера Ы, весьма велика. Если орбитали строятся по правилам Слетера (раздел 2.8), то численное значение интеграла перекрывания / г )А(25)г15в(25)с т для соседних атомов равно 0,50. Поэтому следует ожидать полной делокалнзации орбиталей. Эти орбитали, известные как волновые функции Блоха, названы по имени их первого исследователя [20]. Время, к которому относится работа Блоха (1928 г.), указывает на то, что [c.343]

    Молекулярные орбитали Теория порядок связи Эксперик [c.121]

    В<сьма разнообразны также оксиды, в которых координационное число кислорода превышает значение его максимальной валентности, т. е. больше четыр( X. Например, в кристалле MgO координационное число кислорода равно шести, а в кристалле NaoO восьми. Согласно теории молекулярных орбита-лей эта обусловлено тем, что в кристалле М 0 (структурный тип Na l) каждый атом С (за счет 2р -, 2р, - и 2р -орбиталей) объединяется с шестью соседними атомами Vlg посредством трех трехцентровых связей. Аналогично построены кристаллические МпО, FeO, СоО, NiO и другие оксиды со структурой тина Na l. [c.311]

    Возникающая в результате образования молекулярных орбиталей комплекса диаграмма энергетических уровней изображена на рис. 20-14. В ее нижней части находятся уровни шести связывающих орбиталей, заполненные электронными парами. Их можно пр)едставить как шесть электронных пар, поставляемых лигандами-донорами, и больше не обращать на них внимания. Точно так же можно исключить из рассмотрения четыре верхние разрыхляющие орбитали, являющиеся пустыми, за исключением предельных случаев сильного электронного возбуждения, которыми можно пренебречь. Несвязывающий уровень и нижний разрыхляющий уровень соответствуют двум уровням, и вд, к которым приводит расщепление кристаллическим полем (см. рис. 20-13). Мы будем продолжать называть их по-прежнему уровнями 12д и е даже в рамках молекулярно-орбитального подхода. Но важно отметить разницу в объяснении расщепления между этими уровнями. В теории кристаллического поля оно является следствием электростатического отталкивания, а в теории поля лигандов-следствием образования молекулярных орбиталей. Как мы убедились в гл. 12 на примере молекул НР и КР, теория молекулярных орбиталей позволяет охватить все случаи от чисто ионной до чисто ковалентной связи. Поэтому выбор между теорией кристаллического поля и теорией поля лигандов основан лишь на рассмотрении одной из двух предельных моделей связи. В комплексе СоР довольно заметно проявляется ионный характер связи, потому что, как можно видеть из рис. 20-14, орбитали лигандов располагаются по энергии ниже орбиталей металла и ближе к связывающим молекулярным орбиталям. Поэтому связывающие молекулярные орбитали по характеру должны приближаться к орбиталям лигандов, а это должно обусловливать смещение отрицательного заряда в направлении к лигандам. Таким образом, связи в данном случае должны быть частично ионными. [c.235]


    ПЛОТНОСТИ я-орбитали находится между атомами С и N. а не в направлении к атому металла. Гораздо сильнее взаимодействует с уровнем 2д металла разрыхляющая я -орбиталь (рис. 20-16,6). Однако в этом случае эффект обратен тому, который наблюдался для лиганда С1 . Электроны на Сзд-орбиталях металла получают возможность частично делокализоваться и переместиться на я -орбиталь лиганда. Такая делокализагшя стабилизирует 2д-орбиталь, т. е. понижает ее энергию. В результате возрастает энергия расщепления, Д . Этот эффект представляет собой я-взаимодействие металла с лигандом, или М - Ь-я-взаимодействие нередко его пазы вают еще дативным я-взаимодействием. Лиганды, повышающие расщепле ние уровней указанным образом (СО, СЫ , N0 ), пользуясь терминоло гией теории кристаллического поля, называют лигандами сильного поля Одноатомные лиганды с несколькими неподеленными парами электронов как, например, галогенидные ионы, являются лигандами слабого поля, по тому что они играют роль доноров электронов. Связанные группы атомов наподобие СО скорее относятся к лигандам сильного поля, потому что их связывающие я-орбитали сконцентрированы между парами атомов и удалены от металла, тогда как пустые разрыхляющие молекулярные орбитали простираются ближе к металлу. [c.237]

    Молекулярные орбитали в комплексных соединениях. Пс скольку теория кристаллического поля рассматривает центральную частицу комплекса как ион, ее результаты нельзя считать удовлетворительными, если связь комплексообразователя с лигандами далека от ионной. О неточности ионной модели свидетельствует и спектрохимический ряд. В этом ряду, например, ион СМ-предшествует иону р-, однако ион Р" меньше иона СЫ- и на основании электростатики следовало бы ожидать большего воздей-. ствия на центральный ион ионов Р , чем СЫ . [c.127]

    Наиболее строгое объяснение природы связи в комплексных соединениях достигается применением метода молекулярных орбиталей. Этот метод значительно сложнее теории кристаллического поля расчет энергии связи в комплексных соединениях по методу МО требует использования мощных вычислительных машин. По теории кристаллического поля расчеты несравненно проще, и ею нередко пользуются при рассмотрении объектов, к которым она не вполне применима, для получения ориентировочных оценок. Для комплекса волновая функция молекулярной орбитали фмо представляет собой линейную комбинацию, состоящую из волновых функций орбитали центрального атома металла фм и групповой орбитали лигандов 2сфь (линейная комбинация определенных орбиталей лигандов)  [c.127]

    Электроны неподеленных пар лиганда переходят на молекулярные орбитали, т. е. происходит частичное смещение электронной плотности в направлении лигандцентральный ион, благодаря чему связь приобретает частично ковалентный характер. Механизм образования связи во многом напоминает донорно-акцепторный. Теория поля лигандов позволяет из спектров комплексов установить последовательность роста ковалентности связи в ряду лигандов (не-фелоксетический ряд) [c.127]

    Дьюар М,, Догерти Р. Теория возмущения молекулярных орбита-лей в органической химии. -М. Мир, 1977. -695 с. [c.288]

    В теории связанных орбиталей волновые функции молекулы получаются с помощью волновых функций, относящихся к различным связям молекулы, т. е. с помощью связанных орбита-лей. В модели ЛКСО молекулярные орбитали являются линейной комбинацией связанных орбиталей, каждая из которых в свою очередь является комбинацией атомных орбиталей, или гибридов, образующих рассматриваемую связь [2Ь]. В методе ХСЛП многоэлектронные волновые функции являются суммой произведений функций, которые содержат функции типа функций Хайтлера и Лондона (пространственная и спиновая функции) для каждой связи молекулы. [c.99]

    Теория молекулярных орбиталей существование подобных соединений объясняет следующим образом. Как показано ниже, в ионе HF за счет ls-орбитали водорода и двух 2р-орбиталей двух атомов фтора возникают три молекулярные орбитали связывающая о , несвязывающая а й разрыхляющая [c.293]

    СЫ- или СО),, т. е. имеет место делокализация электронов, можно показать с помощью спинрезонансной спектроскопии. Необходимо построить молекулярные орбитали комплексных соединений подобно тому, как это было показано при рассмотрении молекулярных орбиталей СН4 (разд. 6.3.4). Для этого берутся определенные линейные комбинации молекулярных орбиталей лигандов, которые имеют такую же симметрию, как и атомные -орбитали центрального иона. Линейные комбинации для октаэдрических комплексов приведены в табл. А.28, а в более наглядном виде—на рис. А.58. (Индексы симметрии а1е, е , (ы и т. д. взяты из системы обозначений, принятых в теории групп, и здесь не обсуждаются.) Молекулярные орбитали комплексных соединений образуются линейной комбинацией таких атомных орбиталей металла и орбиталей лиганда, которые имеют одинаковую симметрию, так как в этом случае наблюдается максимальное перекрывание. Результаты энергетических расчетов молекулярных орбиталей представлены на рис. А.59. Разрыхляющие орбитали отмечены звездочкой. Заполнение электронами происходит, как обычно, попарно. Если в образовании связи принимают участие-12 электронов от шести октаэдрических лигандов и п -электронов металла, то первые заполняют связывающие и- и -орбитали, а -электроны — несвязывающие t2e- и разрыхляющие вг -орбитали. Последние две молекулярные орбитали играют ту же роль, как и в теории поля лигандов. Их расщепление также обозначают 10/) , хотя на энергию расщепления влияет перекрывание при образовании ковалентных связей. [c.136]

    Э-гог акт нельзя объяснить на бд че тех знаний, которые предусмотрены школьной программой. Однако он вполне объясним с пошщш теории молекулярных орбита-лей. Согласно этой теории, орбитали всех незаполненных подуровней принимают участ ис в образовании связей. При этом образу кггся новые - молекулярные орбитали. [c.76]

    Дальнейшему развитию теории гетерогенного катализа способствовало использование метода молекулярных орбиталей (МО) — теория поля лигандов для комплексных соединений. Поскольку в этой теории рассматриваются молекулярные орбитали адсорбированных молекул (атомов) и атомов катализатора, она дает возможность установления связи между их химической способностью и каталитической активностью катализатора. Для расчетов обычно используется метод линейных комбинаций атомных орбиталей (МОЛКАО). Широкому использованию кваптоЕомеханических расчетов в в атализе в настоящее время препятствуют трудности математического описания сложных многоатомных систем субстрат — катализатор. А [c.304]

    Рассмотрим, как можно представить строение комплекса Т1(НгО)б + уже разобранного нами с позиций теории кристаллического поля. Двенадцать электронов связи НзО—находятся на шести связывающих молекулярных орбитах, а единственный -электрон Т1 + занимает <2я-молекулярную орбиту. Если центральный ион содержит два или три -электрона (например, У +, Сг +), то все они, очевидно, находятся на наинизшей по энергии молекулярной несвязывающей 2г-орбите. Если же центральный ион содержит четыре, пять, шесть или семь -электронов, возможна одна из следующих двух ситуаций. [c.261]

    Волновая функция молекулярной орбитали фмо в комплексе представляет собой линейную комбинацию, состоящую из орбитали центрального атома срме и линейной комбинации определенных орбиталей лигандов 2сфь, которая называется групповой орбиталью лигандов. Слово групповая указывает, что совокупность этих линейных комбинаций отвечает требованиям теории групп. Таким образом [c.227]

    Среди различных подходов к объяснению образования комплексного иона наиболее общий дает теория молекулярных орбиталей. Впервые она была применена к комплексным ионам Ван-Флском Ч В методе используются те же орбитали центрального атома, что и в методе Полинга, но, кроме того, и орбитали N координирующихся лигандов М — число лигандов), направленных к центральному атому. Таким образом, для построения молекулярных орбиталей при наличии шести лигандов пригодными будут пятнадцать атомных орбиталей. При октаэдрическом расположении лигандов это будут три вырожденные несвязывающие -орбитали (1 , йу ) каждая с четырьмя долями, направленными между лигандами, шесть связывающих, происходящих от гибридизации, и шесть соответствующих им разрыхляющих орбиталей. По аналогии с методом Полинга, конфигурацию молекулярных орбиталей можно представить следующим образом [жирные линии разделяют орбитали с различной энергией (см. рис. 7-4), а отдельные клетки изображают молекулярные орбитали]  [c.265]

    Учет л-связей. До сих пор мы пре небрегали я-связью, хотя данные, приведенные в табл. 7-10, наводят на мысль о необходимости ее учета с позиций теории молекулярных орбиталей. зй Орбитали металла имеют ту же симметрию, что и я-молекулярные орбитали лиганда. Следовательно, /гя ОРбитали, которые ранее называли несвязы Бающими, в действительности мо гут принимать участие в обра зовании я-связи. "Метод построения молекулярных орбиталей с участием я-орбиталей лигандов во многом сходен с методом построения молекулярных а-орбиталей. з -Орбитали расщепляются на связывающие и разрыхляющие,как показано на рис. 7-6. Снижение энергии для ая Связывающих орбиталей увеличивает разность в энергии между I2 - и незатронутой разрыхляющей ор биталью. Это увеличивает величину ООд А), и, следовательно, мы можем сказать, что лиганд, способный образовать я-связи, более сильный по сравнению с тем, который не может их образо аать. Согласно теории молекулярных орбиталей, увеличение раз ности в энергиях между и е -орбиталями, обусловленное а-связью, ответственно за спаривание электронов и образование низкоспиновых комплексов. В теории кристаллического поля это приписывается увеличению электростатического поля лиганда, а согласно теории молекулярных орбиталей, расщепление обусловлено увеличением ковалентности связи, а не увеличением электро татического поля. [c.270]

    Последовательное применение теории молекулярных орбита-лей к многоатомным молекулам требует рассмотрения молекулярных орбиталей, построенных из нескольких атомных орбиталей (многоцентровых молекулярных орбиталей). Например, для молекулы метана надо описать восемь молекулярных орбиталей, образованных четырьмя 15-орбиталями атомов Н и 2з-, 2рх-, 2ру, 2рг-орбиталями атома С. Такой подход теряет всякую наглядность и оправдан лишь при количественном кьантово-механическом рассмотрении подобных систем. Для большого числа молекул можно ограничиться двухэлектронными связями, т. е. рассматривать молекулярные орбитали изолированно для каждой химической связи. [c.72]

    Потенциалы ионизации молекул. Представление о верности самого понятия молекулярной орбитали может быть проверено экспериментально измерением потенциалов ионизации-молекул. Потенциалы ионизации с разных орбиталей можно определить методом фотоэлектронной спектроскопии [к-7]. В то же время по теореме Купменса (см. 24) орбитальные энергии приближенно равны потенциалам ионизации ПИ, с этих орбиталей. Сравнение E (см. табл. 12) и ПИ, (табл. 14) убеждает в пра-вил1>ности теории молекулярных орбиталей. [c.157]

    Симметрия. молекулярной орбитали во многом определяется симметрией равновесной конфигурации молекулы. Следовательно, от симметрии молекулы зависят правила отбора в спектрах поглощения и испускаш1я и распределение электронной плотности. Молекулы, обладающие центром симметрии (Д, <Х и др.), — неполярны, например Вер2 и, неполярны также молекулы высокой симметрии, хотя и не имеющие центра, симметрии, как, например, тетраэдрические СН4, СС1(4 и другие (3 ), плоские ВРз, А1Рз и другие (1>з ). Если равновесная конфигурация молекулы известна, то существование или отсутствие дипольного момента может быть точно предсказано на основании соображений симметрии при помощи теории групп. В свою очередь измерение дипольного момента может указать на геометрию равновес- [c.176]

    В теории кристаллического поля (ТКП) лиганды выступают только как Источник создаваемого ими поля. Химическая связь центральный ион — лиганд рассматривается как ионная (например, в [СоРе] ) или ион-дипольная ([Ре(Н20) ), электронная оболочка центрального иона— как автономная, а oбoJЮЧки лигандов вообще не рассматриваются. Такой подход является приближенным. Опыты по электронному парамагнитному резонансу показывают, что электронная плотность ие сосредоточена на лигандах и центральном ионе, а частично размазана в объеме комплексного иона, т. е. что связь в координационных соединениях — ковалентная с большей или меньшей полярностью. Для описания такой связи необходимо привлечь теорию молекулярных орбита-лей, как более общую, чем электростатическая теория ионной связи. В ней находят объяснение Т01якие магнитные эффекты, интенсивность спектров поглощения и другие свойства, не получившие объяснения в ТКП. Сама же ТКП оказывается частным случаем более общей теории МО ЛКАО, получившей в химии координационных соединений название теории поля лигандов (ТПЛ), основы которой заложены Ван-Флеком. [c.247]


Смотреть страницы где упоминается термин Молекулярных орбит теория: [c.47]    [c.98]    [c.103]    [c.76]    [c.45]    [c.56]    [c.109]   
Органическая химия. Т.2 (1970) -- [ c.509 , c.512 , c.514 ]

Химия координационных соединений (1966) -- [ c.60 , c.121 ]

Органическая химия Углубленный курс Том 2 (1966) -- [ c.496 , c.499 , c.501 ]




ПОИСК





Смотрите так же термины и статьи:

Орбита



© 2025 chem21.info Реклама на сайте