Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Подход Полинга

    Поскольку точное решение уравнения Шредингера для более сложных молекул, чем Нг, невозможно, возникли различные приближенные методы расчета волновой функции, а следовательно, распределения электронной плотности в молекуле. Наиболее широкое распространение получили два подхода теория валентных связен (ВС) и теория молекулярных связей орбиталей (МО). В развитии первой теории особая заслуга принадлежит Гайтлеру и Лондону, Слетеру и Полингу, в развитии второй теории — Малликену и Хунду. [c.46]


    Эта теория отличается от подхода Полинга тем, что она заостряет внимание на энергиях -орбит центрального атома. Она исходит из рассмотрения влияния окружающих лигандов на эти энергии. Если лиганды являются полярными молекулами, то ближе всего к центральному атому находятся отрицательные концы их диполей. Если это так или если лиганды являются в действительности отрицательными ионами, вокруг центрального атома группируются отрицательные заряды, причем их расположение определяется геометрией комплекса. Здесь рассматривается только случай октаэдрических комплексов. [c.166]

    Теории кристаллического поля и поля лигандов оказались весьма плодотворными при рассмотрении корреляций между свойствами комплексов переходных металлов, например легкостью образования комплексов и стабильностью уже возникших соединений, реакционноспо-собностью, спектрами поглощения, магнитными свойствами, стереохимией и электронным строением комплексов. Подход Полинга, основанный на методе валентных структур, также не следует отвергать полностью в некоторых отношениях он дополняет теорию поля лигандов. Однако теории кристаллического поля и поля лигандов обладают тем существенным преимуществом, что они более приспособлены для количественного рассмотрения комплексных соединений. В настоящей книге мы коснемся применения теории кристаллического поля только к одному вопросу. [c.170]

    Подход Полинга отличается от многочисленных предпринимавшихся до него попыток построить спиральную модель полипептидной цепочки тем, что Полинг отказался от требования, чтобы на один виток спирали приходилось целое число аминокислотных остатков (2, 3, 4 или 6). Вообще говоря, для изолированной спирали требование целочисленности ниоткуда не вытекает, поскольку каждый аминокислотный остаток находится в положении, полностью эквивалентном положению прочих приведенные выше соображения говорят в пользу спирали, содержащей 3,6 остатка на виток. Однако если речь идет о кристалле, то для плотной упаковки необходимо, чтобы образующие его молекулы имели целочисленные оси второго, третьего, четвертого или шестого порядка. Существование нецелочисленных винтовых осей в волокнах должно означать, что внутримолекулярные взаимодействия п такого рода молекулах значительно сильнее их взаимодействий с соседними молекулами. [c.247]

    Для того чтобы исправить недостатки подхода Полинга, было разработано множество других шкал электроотрицательности. Ни одна из них не дает реальной возможности проводить количественные расчеты, и шкала Полинга до сих пор остается полезным дополнением к интуитивным соображениям химиков при определении степени ионности связи. [c.206]


    В основе подхода Полинга к определению значений электроотрицательности лежит допущение, что энергия чисто ковалентной связи ( ков) между атомами А и В (обозначается D (А—В)) равна среднему арифметическому энергий ковалентных связей D (А—А) и D (В—В). Однако если электроотрицательности А и В не одинаковы, то связь между ними будет иметь некоторую ионную составляющую, и возникающая энергия связи D (А—В) будет отличаться от энергии чисто ковалентной связи  [c.157]

    Для описания химической связи наиболее широко используются два подхода метод молекулярных орбиталей (МО) и метод валентных связей (ВС). В развитии метода ВС особая заслуга принадлежит В. Гейтлеру и Ф. Лондону, Д. Слетеру и Л. Полингу, в развитии метода МО — Р. Малликену и Ф. Хунду. [c.44]

    Но меня тянуло и к химии. Она привлекала меня возможностью объяснить наследственность. Главным химиком тут был Лайнус Полинг. Дельбрюк не любил Полинга, и это удивляло меня. Полинг — такой великий человек Но у них был разный подход к науке. Дельбрюк был очень широк — он интересовался многими разделами науки, даже теми, где он не работал. Для Полинга же существовала только та наука, которую он сам изобрел. Но, конечно, изобрел он немало. Правда, и Дельбрюк не очень-то интересовался а-спиралями Полинга. [c.136]

    Изучению магнитных свойств комплексов большую важность придавал Полинг. Для комплексов с центральным ионом, обладающим 4,5, 6, 7 или 8 -электронами, он предложил магнитный критерий типа связи. Согласно этому критерию спин-свободные комплексы можно рассматривать как ионные, а спин-спаренные — как ковалентные. Такой подход позволяет провести систематизацию данных по комплексам, связав воедино магнитные и спектральные свойства с химическими свойствами и результатами рентгеноструктурного анализа. [c.213]

    Начало одному из методов было положено работой В. Гейтлера и Ф. Лондона (1927). Они впервые объяснили природу сил в молекуле водорода. В 30-х годах эти идеи были развиты Слейтером и Полингом для многоатомных молекул. Их представления получили название — спиновая теория валентности, или метод электронных пар. Параллельно с указанным плодотворно развивается другой подход к объяснению ковалентной связи, получивший название метода молекулярных орбиталей (Гунд, Милликен, Хюккель, Леннард-Джонс, Коулсон). [c.87]

    Для описания химической связи широко используются два подхода теория молекулярных орбиталей (МО) и теория валентных связей (ВС). В развитии теории ВС особая заслуга принадлежит Гейтлеру и Лондону, Слетеру и Полингу в развитии теории МО — Малликену и Хунду. [c.51]

    Начало развитию К. х. положили работы ряда исследователей, выполненные в период становления квантовой механики. В. Гейзенберг (1926) впервые провел расчет атома гелия В. Гайтлер и Ф. Лондон (1927) на примере молекулы водорода дали квантовомех. интерпретацию ковалентной связи. Их подход нашел дальнейшее развитие в работах Дж. Слейтера (1931) и Л. Полинга (1931) и получил назв. валентных связей метод. В этот же период Ф. Хунд (1928), Р. Малликен (1928), Дж. Леннард-Джонс (1929) и Э. Хюк-кель (1930) заложили основы широко распространенного в настоящее время молекулярных орбиталей метода. Одновременно появились и основополагающие работы Д. Харт-ри (1927) и В.А. Фока (1930), создавших самосогласованного поля метод, а также работы Дж. Слейтера (1929-30) по мат. основам конфигурационного взаимодействия метода. X. Бете (1929) и Дж. Ван Флек (1932-35) разработали кристаллического поля теорию, развитие к-рой привело к созданию поля лигандов теории, нашедшей широкое применение в координац. химии. [c.365]

    Итак, можно констатировать, что у всех исследований, направленных на разработку эмпирических предсказательных алгоритмов трехмерных структур белка, неадекватными изучаемому явлению оказываются и положенные в их основу спиральная концепция Полинга-Кори, и гидрофобная концепция Козмана об организации нативной конформации, и используемые методы, и выбранная стратегия решения задачи. Такой путь следует считать бесперспективным, так как он в принципе, а не из-за сложности проблемы или недостатка экспериментального материала, не может привести к конечной цели - априорному количественному описанию геометрии и конформационных возможностей остатков в белковой глобуле. Не может играть он и вспомогательную роль, например, в получении промежуточных данных о структуре или ее отдельных частей, которые были бы полезны в последующем уточнении. Бесперспективность эмпирического подхода подтверждают результаты всех предпринятых за последние три десятилетия попыток следовать ему. [c.81]

    Развитый в работах Ф. Коэна, М. Стернберга и соавт. [156-158, 168, 169, 171] подход не опирается на общую физическую теорию и единый метод расчета, устанавливающие логические и количественные связи между аминокислотной последовательностью белка и координатами атомов нативной конформации молекулы. Каждая стадия комбинированного подхода следует своим эмпирическим правилам, корреляционным соотношениям, предсказательным алгоритмам и методологическим приемам. Объединяющим (скорее, отягощающим) все его составные части началом служит традиционное, сложившееся еще в 1950-е годы, представление о пространственной организации белковой глобулы в виде ансамбля регулярных вторичных структур (концепция Полинга и Кори) с внутренним гидрофобным ядром и внешней гидрофильной оболочкой (концепция Козмана). Несмотря на отсутствие заметного прогресса и разочаровывающие результаты предсказаний, стремление решить проблему пространственной организации белков на основе эмпирического подхода не ослабевает ни в 1980-е, ни в 1990-е годы [107. Гл. 6, 7]. Оставаясь на тех же идейных позициях, работы последнего десятилетия приобретают большее разнообразие. [c.510]


    Еще в 1949 г. Полинг говорил о целесообразности получения синтетическим путем полимерной сетки, пустоты которой подходили бы только одному из двух энантиомеров [75]. В принципе это своего рода имитация активного центра фермента, который может рассматриваться как хиральная пустота в молекуле белка — часто высокоспецифичная по отношению к энантиомерам субстрата вследствие жестких стерических требований для многоточечного связывания. Поскольку этот прием можно сравнить с созданием гипсового слепка с оригинала, он получил название метод молекулярного отпечатка . Таким образом, молекула данного соединения представляет собой клише, с которого с помощью жесткой полимерной сетки делается слепок. Эту теоретически совершенно ясную процедуру реализовать на практике весьма трудно, и ее осуществление включает три следующих этапа. [c.129]

    Если в двухатомной молекуле А-В электроны, образующие связь, притягиваются к атому В сильнее, чем к атому А, то атом В считается более электроотрицательным, чем атом А. Для количественной оценки электроотрицательности атомов элементов разные авторы (Полинг Оллред и Рохов Малликен) предложили несколько различных подходов к оценке этой величины. Численные значения электроотрицательностей, рассчитанные по различным методикам, отличаются, но, несмотря на это, последовательность расположения элементов по щкале электроотрицательностей практически не зависит от метода определения этой величины. [c.12]

    Химики в течение многих лет используют таблицы энергий связи, которые позволяют рассчитать теплоты образования, учитывая число и типы связей в молекулах. Энергии связей, введенные Фаянсом [56] и широко использованные Сиджвиком [57] и Полингом [58], были определены простым путем из термохимических данных. Было предположено, что каждая связь данного типа имеет постоянную характеристическую энергию, которая не изменяется при переходе от одной молекулы к другой, и что величины нергии связей являются аддитивными. Другой подход основан на понятии инкрементов групп молекулу рассматривают как сочетание групп атомов, каждой из которых приписывают инкремент энергии сумма этих инкрементов равна теплоте образования молекулы. Очевидно, что эти две концепции близко связаны между собой. [c.101]

    Интересное замечание по усовершенствованию методов расчета ков сделал также Сандерсэн [15]. Учитывая различие в длине реальной химической связи (гэксп) и ковалентного межатомного расстояния, т.е. суммы ковалентных радиусов (/"ков), он считает необходимым для вычисления значения ковалентной части энергии связи умножать аддитивную энергию (по (1.5)) на фактор ГковАэксп- Эта коррекция, в принципе, правильна, но практически не может считаться удовлетворительной, так как предполагает, что энергия ковалентной связи обратно пропорциональна длине связи, что не всегда верно. Более того, замечание Сандерсэна не опровергает, а скорее подтверждает правильность подхода Полинга. В самом деле, сокращение межатомных расстояний в реальной связи по сравнению с суммой ковалентных радиусов, приводящее к увеличению ковалентной составляющей энергии, компенсирует ее уменьщение за счет перехода части электронов на ионные орбиты. [c.22]

    Для объяснения этого факта предложены два подхода. Полинг [66] принимает в исходном приближении угол 90 и то, что в молекуле НгО угол больше 90°, объясняет отталкиванием полярных связей О — Н (см. рис. 5.18). При другом подходе, предложенном Диккенсом и Линнетом [21], принимают в исходном приближении угол между связями равным 109°, как это следует из распределения электронов в конфигурации инертного газа (ионы О и изоэлектронны неону). Искажение этого угла обусловлено тем, что протоны оттягивают связывающие пары электронов от центрального атома происходит уменьшение энергии отталкивания этих [c.81]

    Вопросам конформации белковых молекул посвящен ряд работ дважды лауреата Нобелевской премии Лайнуса Полинга. Основные идеи подхода Полинга изложены в вышедшей в 1954 г. обзорной статье Полинга и Кори . Свойства белков по П олингу [c.590]

    В результате Максу было сообщено, что мы с Френсисом должны оставить ДНК в покое. Брэгг не испытывал опасений, что это может помешать развитию науки, так как, наведя справки у Макса и Джона, он не обнаружил в нашем подходе к решению задачи ничего оригинального. После успеха Полинга вера в спираль уже не могла свидетельствовать ни о чем, кроме примитивного ума. Да и как бы то ни было, группа Кингз-колледжа имеет право первой испробовать спиральные модели. [c.61]

    Другой недостаток, препятствующий моделированию сложных систем -стремление к описанию их на уровне взаимодействия элементарных частей системы. Применительно к физико-химическим и экологическим системам такой подход опасен по двум причинам. Во-первых, не ясен детальный химический состав природных систем. Во-вторых, неизвестна вся совокупность химических превращений. Квантовая теория изменила представления о атомах и молекулах. Одно из крупнейших достижений физики и химии XX века — теория гибридизации Л, Полинга, обычно, понимается довольно узко, хотя испи1иый И)l л этой теории в том, что атом в молекуле и нзолированньит атом совершенно разные вещества. [c.45]

    Среди различных подходов к объяснению образования комплексного иона наиболее общий дает теория молекулярных орбиталей. Впервые она была применена к комплексным ионам Ван-Флском Ч В методе используются те же орбитали центрального атома, что и в методе Полинга, но, кроме того, и орбитали N координирующихся лигандов М — число лигандов), направленных к центральному атому. Таким образом, для построения молекулярных орбиталей при наличии шести лигандов пригодными будут пятнадцать атомных орбиталей. При октаэдрическом расположении лигандов это будут три вырожденные несвязывающие -орбитали (1 , йу ) каждая с четырьмя долями, направленными между лигандами, шесть связывающих, происходящих от гибридизации, и шесть соответствующих им разрыхляющих орбиталей. По аналогии с методом Полинга, конфигурацию молекулярных орбиталей можно представить следующим образом [жирные линии разделяют орбитали с различной энергией (см. рис. 7-4), а отдельные клетки изображают молекулярные орбитали]  [c.265]

    Современный квантово-механический этап развития теории строения исторически создавался на базе двух разных подходов, двух разных теоретических методов приближенного решения уравнения Шредингера. Это теория ВС, разрабатываемая в 30-е годы XX в. Л. Полингом, Дж. Слетером и др,, и практически одновременно возникшая теория молекулярных орбиталей (МО), основные положения которой сформулированы в трудах Р. Малли-кена, Ф. Хунда, Г. Герцберга, В. Хюккеля и др. Обе [c.284]

    Образ нашего мышления в органической химии меняется в соответствии с усложнением используемых нами модельных представлений. Представление молекул в виде твердых шарообразных атомов, связанных друг с другом стержнями, было и остается важным в работе химика-органика. Однако, чтобы понять механизмы многих реакций, необходимо более усложненное представление молекул, которое дается теорией электронных пар Льюиса, очень успешно развитой английскими химиками сэром Робертом Робинсоном и сэром Кристофером Ингольдом. Для обозначения смещений электронов в ходе химической реакции были использованы изогнутые стрелки, что привело к значительно лучшему пониманию тех факторов, которые контролируют химические реакции. Американский ученый Лайнус Полинг и другие авторы развили теорию резонанса, показав важность рационального подхода, основанного на всеобще применимом пиктографическом языке. Интеллектуальной основой современной органической теории в значительной мере является использование канонических форм или резонансных гибридов наряду с широким применением изогнутых стрелок. Немного парадоксально, что Р. Б. Вудвард, первейший мастер расставления стрелок в реакциях, оказался главным движителем в развитии картинами мыслимой орбитальной теории. Ряд реакций (в частности, циклоприсоединение типа реакции Дильса-Альдера) не очень хорошо описывался с позиций концепций изогнутых стрелок или канонических форм. Иногда такие реакции называли [c.8]

    Правила расчета гамильтониановских интегралов между разными структурами труднее, и ввиду отсутствия в настоящее время интереса к исследованиям в этой области их, по-видимому, не стоит приводить в данной книге. Отошлем читателя за подробностями к работе Полинга [1]. Вопрос о взаимодействии между структурами будет еще рассматриваться в последнем разделе данной главы. Ясно, что метод валентных схем, по крайней мере в простейшей эмпирической форме, при выборе соответствующих валентных структур в значительной мере опирается на химическую интуицию. В определенном смысле может показаться преимуществом, что химический опыт можно непосредственно учесть при квантовохимическом расчете. Однако это можно считать и недостатком метода, так как такой подход предполагает определенную степень знания ответа к задаче еще до проведения расчетов. Другими словами, результаты расчета по методу валентных схем будут неправильны, если химическая интуиция подсказала неправильный ответ. Но часто ценны как раз те расчеты, результаты которых опровергают химическую интуицию. [c.298]

    Эмпирическое направление, рассмотрение которого было начато во втором томе настоящего издания, базируется на данных статистического анализа известных кристаллических структур белков, равновесной термодинамики, формальной кинетики и концепциях Полинга-Кори и Козмана, т.е. исходит из предположения об исключительной роли в сборке гетерогенной аминокислотной последовательности регулярных вторичных структур и представления о гидрофобных взаимодействиях как главной упаковочной силе. Считается, что по сравнению с множеством мыслимых нерегулярных локальных структур вторичные структуры являются самыми стабильными их возникновение, инициирующее процесс и обусловливающее дальнейшее его развитие, осуществляется с наибольшей скоростью. Благодаря гидрофобным взаимодействиям вторичные структуры образуют супервторичные, т.е. полярные остатки стремятся расположиться на внешней оболочке глобулы, а неполярные - в ее интерьере. Идеальная модель трехмерной структуры белка, согласно эмпирическому подходу, должна представлять собой ансамбль вторичных и супервто-ричных структур и иметь гидрофобное ядро, экранированное от водной среды гидрофильной оболочкой. Процесс создания такой модели из статистического клубка должен быть равновесным фазовым переходом первого рода, подчиняющимся классической термодинамике, статистической физике и формальной кинетике так же, как им подчиняются процессы кристаллизации малых молекул и образования линейных спиральных сегментов гомополипептидов. [c.6]

    При поиске решения структурной проблемы белка особенно вдохновляющими примерами явились результаты теоретических исследований Л. Полинга и Р. Кори регулярных структур полипептидов [53] и Дж. Уотсона и Ф. Крика двойной спирали ДНК [54]. В этих работах с помощью простейшего варианта конформационного анализа - проволочных моделей, получивших позднее название моделей Кендрью-Уотсона, а также ряда экспериментальных данных, прежде всего результатов рентгеноструктурного анализа волокон (в случае ДНК еще и специфических соотношений оснований Э. Чаргаффа), удалось предсказать наиболее выгодные пространственные структуры полимеров. Собственно, предсказана была как в случае пептидов, так и нуклеиновых кислот, геометрия лишь одного звена, которое в силу регулярности обоих полимеров явилось трансляционным элементом. Белок же - гетерогенная аминокислотная последовательность, и поэтому таким путем предсказать его трехмерную структуру нельзя. Но то обстоятельство, что простейший, почти качественный, конформационный анализ привел к количественно правильным геометрическим параметрам низкоэнергетических форм звеньев, повторяющихся в гомополипептидах и ДНК, указывало на большие потенциальные возможности классического подхода и его механической модели в описании пространственного строения молекул. [c.108]

    Во втором томе настоящего издания [132] были обсуждены возмож-йости и перспективы статистического подхода и эмпирических алгоритмов Йредсказания, с помощью которых пытаются решить проблему свертывания белка на основе данных рентгеноструктурного анализа о пространственном строении белков, а-спиральной гипотезы Полинга и Кори, Дрофобной концепции Козмана и стереохимических ограничений. В этой Ьтаве рассматриваются преследующие ту же цель теоретические методы >асчета оптимальных конформаций пептидов и белков, предложенные в онце 1980-х и первой половине 1990-х годов. В настоящее время, поводимому, можно считать общепринятым представление о нативной конформации белка как о термодинамически равновесном состоянии РЗЗ-136]. Впервые оно было постулировано Р. Ламри и Г. Эйрингом в 1954 г. [137], однако больше известно как термодинамическая гипотеза [c.239]

    Шкала ионных радиусов Полинга далеко не единственная. Широкое распространение получили также шкалы, предложенные В. М. Гольдшмидтом, Г. Б. Бо-кием, С. Гурари и Ф. Дж. Адрианом и др. При всем различии подходов ионные радиусы в различных шкалах отличаются незначительно, а полученные из них межионные расстояния в кристаллах, естественно, не зависят от метода разделения их по ионам. Во всех шкалах наблюдаются закономерности, аналогичные приведенным в табл. 7. Ионы благородногазового типа, т. е. имеющие во внешнем слое з- или -электроны, имеют обычно больший радиус, чем ионы, имеющие во внешнем слое -электроны. Например, радиус Си равен [c.122]

    Однако подход с позиций атомных валентных связей оказался не в состоянии объяснить магнитные свойства и также не смог дать полного объяснения явлению электропроводности. Коррективы в изложенную выше концепцию внес Л. Полинг, который выдвинул следующую гипотезу. Вводится допущение, что в связывании участвуют 9 орбиталей (п 1)(1, пз и р из них 6 непосредственно используются для образования химических связей, 0,72 находятся в состоянии, обеспечивающем металлическую связь, а 2,28 являются несвязывающими. Если считать, что магнитные свойства обусловлены электронными состояниями несвязывающих орбиталей, то удается объяснить величины магнитной восприимчивости х (табл. 3.11). Тем не менее величины энергий связи, представленные на рис. 3.10, более удовлетворительно объясняются с позиций, развитых Гриффитсом. [c.134]

    Подход к металлической связи, основанный исключительно на теории валентных связей, сфрмулирован Полингом [8, 9]. Каждый атом образует гибридные с/зр-орбитали, перекрывание которых приводит к металлической связи. Реальная электронная конфигурация металла возникает в результате резонанса между всеми возможными структурами, причем число [c.15]

    В нредыдуш,ем разделе нами уже был рассмотрен квантовохимический подход к проблеме электроотрицательности, трактовка этой проблемы Полингом (метод валентных связей) и Малликеном (метод валентных связей и молекулярных орбит). [c.263]

    В то же время вынос лантаноидов в отдельную строку был сразу принят исследователями, поскольку разрешалась основная проблема — их большое число и трехвалентпое состояние [Коновалов, 1928]. Этот же подход к лантаноидам сохранился и в большинстве современных, в том числе выходящих массовым тиражом настенных и карманных изданий Системы [Спицын, 1963 Реми, 1963 Неницеску, 1968 Некрасов, 1973 Полинг, 1974 Эрдеи-Груз, 1976 Периодическая система..., 1978]. [c.20]


Смотреть страницы где упоминается термин Подход Полинга: [c.270]    [c.188]    [c.561]    [c.175]    [c.51]    [c.10]    [c.4]    [c.143]    [c.180]    [c.229]    [c.9]    [c.135]    [c.127]    [c.76]    [c.72]   
Смотреть главы в:

Основы ферментативной кинетики -> Подход Полинга




ПОИСК





Смотрите так же термины и статьи:

Подход

Полинг



© 2025 chem21.info Реклама на сайте