Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Комплексные соединения комплексы сильного поля

    К4[Ре(СК)в], Кз[Ре(СМ)в]. Дело в том, что практически все лиганды (в том числе Н2О и МНз) в комплексах с катионами триады железа создают недостаточно сильное кристаллическое поле, в котором энергия расщепления меньше энергии спаривания . Соответствующие высокоспиновые комплексы сравнительно малоустойчивы (внешняя 5/ -гибридизация). Лишь лиганды С , возглавляющие спектрохимический ряд , образуют низкоспиновые комплексы с внутренней а 5/7 -гибридизацией, устойчивость которых весьма высока. Так, [Ре(СМ)б] " имеет рЛ сст 36, а [Pe( N)e] — р/Сн сг 44. Этот пример показывает, в частности, что с увеличением степени окисления комплексообразователя (при сохранении координационного числа) параметр расщепления увеличивается и растет устойчивость комплекса, так как один и тот же лиганд создает более сильное кристаллическое поле. Именно поэтому амминокомп-лекс [Со(МНз)о1 значительно стабильнее (р-/( ,,ст 39), чем [ o(NHз)вJ-+ (р-Л сст 6), и в отличие от последнего является диамагнитным . Отсюда следует также вывод о том, что в комплексных соединениях устойчивость степени окисления +3 для кобальта существенно возрастает и становится наиболее характерной для этого элемента. [c.410]


    На основе представлений ТКП о сильных и слабых полях лигандов и об относительных энергиях -орбиталей в полях различной симметрии можно удовлетворительно объяснить ряд свойств комплексных соединений. Однако упрощенность исходных положений этой теории, не учитывающих орбитальной структуры лигандов, делает ее непригодной для объяснения ряда эффектов, определяющих природу координационной связи, и к описанию комплексов, в которых связь центрального иона с лигандами далека от ионной. [c.45]

    ТКП предсказывает дополнительную стабилизацию некоторых комплексных частиц полем лигандов, а также искажение высокосимметричных конфигураций комплексов некоторых металлов (Си +, Сг + и др.). Эта теория объясняет цвет соединений, связывая спектры комплексов с — -переходами электронов, а также магнитные свойства комплексов - и /-катионов. Для 5 р -катионов ТКП не дает каких-либо интересных результатов. Она мало пригодна также для комплексных частиц с сильно выраженным ковалентным характером связей, особенно при наличии л-взаимодейст-вия. [c.60]

    N0", МНз). При этом менее выгодные -орбитали заполняются электронами лишь после полного заполнения более выгодных. Теория кристаллического поля предсказывает дополнительную стабилизацию некоторых комплексных частиц полем лигандов, а также искажение высокосимметричных конфигураций комплексов некоторых металлов (Си " , Сг + и др.). Эта теория объясняет цвет соединений и магнитные свойства комплексов переходных металлов. Для ионов с внешней электронной конфигурацией 5 р теория не дает каких-либо интересных результатов. Для комплексных частиц с сильно выраженным ковалентным характером связей, особенно при наличии я-взаимодействия, эта теория также мало пригодна. Теория кристаллического поля наиболее эффективна для описания высокоспиновых комплексных соединений переходных металлов и /-элементов. [c.20]

    Этот метод применяется для исследования комплексов металлов, обладающих неспаренными электронами. В сильном магнитном поле снимается спиновое вырождение электронных состояний данного комплексного соединения. Энергия перехода между образовавшимися таким образом новыми состояниями пропорциональна интенсивности магнитного поля и фактору Ланде g, который представляет собой фундаментальную величину, получаемую методом ЭПР-спектроскопии. В случае атома в газообразном со- [c.117]


    С позиции теории кристаллического поля хорошо объясняются окислительно-восстановительные свойства некоторых комплексных соединений.Так, известно, что в водном растворе ион Со + проявляет очень сильные окислительные свойства. Стандартный окислительновосстановительный потенциал системы Со " + е Со + равен + 1,82 В. Это свидетельствует о том, что в водном растворе гидратированный ион кобальта (П1) [Со(НаО)в] неустойчив он стремится присоединить электрон и перейти в аква-ион кобальта (П) [Со(НгО)в] В присутствии аммиака или цианидных ионов, наоборот, более устойчивыми являются комплексы, в которых кобальт находится в степени [c.117]

    Комплексные соединения, согласно определению, характеризуются тем, что один из атомов образует большее число связей, чем это следовало бы исходя из его нормальной валентности. Например, трехвалентное железо образует шесть связей в КзГе(СК)д, а четырехвалентный кремний дает шесть связей в Na2SiFg. Аналогично в случае гидратов, аммиакатов и этилендиаминатов солей тяжелых металлов центральный ион образует больше связей, чем это должно быть исходя из его обы чной валентности, равной 2, 3, 4 или 5. Комплексные связи некоторых типов, такие, как, например, в гидратах и аммиакатах, довольно слабы и представляют собой в основном электростатическое взаимодействие между центральньш ионом, нанример Са или Ва, и молекулой воды или аммиака. Сильное электрическое поле многовалентного иона не только притягивает постоянный диполь воды или аммиака, но и вызывает дополнительную наведенную поляризацию. Тем не менее общее взаимодействие слабо и как следствие этого устойчивость комплекса невелика. Обычно гидраты и аммиакаты существуют только в твердом кристаллическом состоянии и разлагаются при плавлении или растворении. [c.35]

    Когда вещество обладает очень больщим парамагнетизмом, его называют ферромагнитным веи еством. Ферромагнетизм возникает в тех случаях, когда магнитные диполи в веществе могут взаимодействовать друг с другом, что приводит к чрезвычайно сильной ориентации моментов по полю. При этом значения I оказываются очень большими. У таких веществ восприимчивости зависят от напряженности поля. В большинстве комплексных соединений парамагнитные центры (ионы металлов) отделены друг от друга лигандами и ферромагнетизм обычно не возникает. Комплексы, не проявляющие ферромагнитных свойств, называются магнитно разбавленными. [c.422]

    Увеличение числа атомов фтора, координируемых металлом, приводит к сдвигу резонансных линий в область более сильного поля из-за конкуренции между атомами фтора за свободные орбитали и частичного изменения характера связи Ме—Р. В пента-и гексафторкомплексах обмен фтора в комплексном ионе происходит очень быстро, однако замедляется в соединениях, содержащих семь и более атомов фтора. Последнее может быть объяснено тем, что цирконий и гафний в водных растворах имеют тенденцию к более высокой координации, чем шесть, поэтому в координационной сфере их фторидных комплексов возможно присутствие молекул воды. Если допустить, что наличие воды способствует обмену, то увеличение числа атомов фтора, замещающих воду в координационном полиэдре, вызовет замедление обмена. [c.277]

    Образование комплексных соединений всегда происходит с участием -орбиталей. Последние могут существовать только для уровней с главным квантовым числом > 3. При этом оказывается, что участвовать в образовании координационных связей в комплексе могут как внутренние, т. е. находящиеся ниже валентной оболочки, так и внешние -орбитали. Примером последнего является молекула 8Ре, где внешний электронный слой атома 8 в основном состоянии имеет конфигурацию (Зх) (3/>) -Так как из четырех электронов, размещенных на трех орбиталях — Рх,Ру и Р , два обязательно должны быть спарены (принцип Паули), атом серы в основном состоянии является двухвалентным потому, что в образовании связей могут принимать участие только песпаренные электроны. То, что указанное соединение тем не менее образуется, является следствием двукратного возбуждения атома серы в состояние (Зх) (Зр) (3 ) . Объясняется такая возможность двумя причинами. Во-нервых, возмущение в поле окружающих молекул приводит к тому, что внешняя -орбиталь оказывается сильно сжатой и энергетически мало отличается от существующей внешней оболочки. С другой стороны, образование связующих внешних орбиталей с примесью -орбиталей, как впервые показал Полинг [15], приводит к образованию очень четко направленных и сильных связей. [c.97]

    Очень широко распространены комплексные соединения ионов металлов с различными полярными органическими и неорганическими молекулами (носледние в химии комплексных соединений называются аддендами). В этих соединениях связь может осуществляться в результате сильного электростатического взаимодействия центрального, обычно многозарядного, иона с полярными молекулами. Классическим примером таких комплексов являются всевозможные аммиакаты, например [Со (МНз)еР+, в котором шесть молекул аммиака удерживаются сильным электростатическим притяжением в поле иона Со +. [c.33]



Смотреть страницы где упоминается термин Комплексные соединения комплексы сильного поля: [c.243]    [c.530]    [c.48]    [c.58]    [c.254]   
Валентность и строение молекул (1979) -- [ c.298 ]




ПОИСК





Смотрите так же термины и статьи:

Комплексные комплексы

Полиены, комплексы



© 2025 chem21.info Реклама на сайте