Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярные коллоиды и их свойства

    Высокополимерные и высокомолекулярные соединения (ВМС) и их растворы занимают особое место в коллоидно-химической классификации. Растворы ВМС, являясь, по существу, истинными молекулярными растворами, обладают в то же время признаками коллоидного состояния. При самопроизвольном растворении ВМС диспергируются до отдельных макромолекул, образуя гомогенные, однофазные, устойчивые и обратимые системы (например, растворы белка в воде, каучука в бензоле), принципиально не отличающиеся от обычных молекулярных растворов. Однако размеры этих макромолекул являются гигантскими по сравнению с размерами обычных молекул и соизмеримы с размерами коллоидных частиц. Приведенные на стр. 13 данные показывают, что размеры макромолекул (гликоген) могут быть не меньшими, а иногда большими, чем размеры обычных коллоидных частиц (золь Аи) и тонких пор. Поскольку дисперсность, как мы уже видели, существенно влияет на свойства системы, очевидно, что растворы ВМС должны обладать рядом признаков, общих с высокодисперсными гетерогенными системами. Действительно, по целому ряду свойств (диффузия, задержка на ультрафильтрах, структурообразование, оптические и электрические свойства) растворы ВМС стоят ближе к коллоидным системам, нежели к молекулярным растворам. Поскольку растворы ВМС диалектически сочетают свойства молекулярных растворов и коллоидных систем, целесообразно называть их, по предложению Жукова, молекулярными коллоидами, в отличие от другого класса, — типичных высокодисперсных систем — суспензоидов [1].  [c.14]


    Некоторые растворенные вещества практически не диффундируют или диффундируют весьма медленно по сравнению с другими (см. гл. I). Это служило одним из отличительных признаков коллоидных раствор(ЭВ. В дальнейшем отличительным признаком коллоидных растворов стали считать также то, что они не обнаруживают вовсе или обнаруживают ничтожно малое осмотическое давление. Понадобилось очень много времени и труда для того, чтобы установить, что эти различия между коллоидами и истинными растворами не являются качественными, а носят только количественный характер. Нет качественной разницы между молекулярно-кинетическими свойствами истинных растворов и коллоидных систем. Молекулярно-кинетические представления об истинных растворах применимы и к коллоидным системам. [c.19]

    Если по оптическим и молекулярно-кинетическим свойствам суспензии и золи с твердой дисперсной фазой резко различны, то по агрегативной устойчивости они имеют много общего. Как правило, частицы суспензий, равно как и частицы лиофобных коллоидов, имеют на поверхности двойной электрический слой или сольватную оболочку. Электрокинетический потенциал частиц суспензий можно определить с помощью макро- или микроэлектрофореза, причем он имеет величину того же порядка, что и -потен-циал частиц типичных золей. Под влиянием электролитов суспензии коагулируют, т. е. их частицы слипаются, образуя агрегаты, В определенных условиях в суспензиях, так же как и в золях, образуются пространственные коагуляционные структуры, способные к синерезису. Явления тиксотропии и реопексии при соблюдении соответствующих условий проявляются у суспензий почти всегда в большей степени, чем у лиофобных коллоидных систем. [c.367]

    В. ОБРАЗОВАНИЕ И СВОЙСТВА РАСТВОРОВ ВЫСОКОМОЛЕКУЛЯРНЫХ. СОЕДИНЕНИИ (МОЛЕКУЛЯРНЫХ КОЛЛОИДОВ) [c.305]

    Следовательно, молекулярные коллоиды имеют общие свойства с истинными растворами, с одной стороны, и с суспензоидами, с другой. [c.73]

    КОЛЛОИДНО-ХИМИЧЕСКИЕ СВОЙСТВА ВЫСОКОМОЛЕКУЛЯРНЫХ СОЕДИНЕНИИ И ИХ РАСТВОРОВ (МОЛЕКУЛЯРНЫЕ КОЛЛОИДЫ) [c.294]

    Изучение свойств растворов высокомолекулярных соединений сыграло огромную роль в развитии коллоидной химии. Первые исследования диффузии, осмоса, оптических свойств коллоидов были проведены с растворами желатины, агара, целлюлозы, т. е. с растворами ВМС. При этом выяснилось, что растворы ВМС более устойчивы по сравнению с золями. В течение длительного времени это объяснялось высоким сродством растворенных веществ к растворителю (дисперсионной среде) и связанной с этим высокой сольватацией. Это нашло отражение в исторически сложившемся названии таких растворов — лиофильные золи или обратимые коллоиды в отличие от лиофобных золей — обычных (необратимых) коллоидных систем. Позднее была найдена истинная причина термодинамической устойчивости лиофильных золей — отсутствие поверхности раздела фаз и поверхностной энергии — их гомогенность. Было показано также, что, хотя свойства растворов высокомолекулярных соединений в значительной степени определяются их сродством к растворителю, доля растворителя, вошедшего в сольватные оболочки, не очень велика. Поэтому правильным следует считать термин растворы ВМС или молекулярные коллоиды , а не лиофильные золи . [c.435]


    В ранний период развития учения о коллоидах считалось, что молекулярно-кинетические представления приложимы в основном к молекулярным растворам. Понадобилось много лет упорного труда для доказательства, что молекулярно-кинетические свойства присущи как молекулярным, так и коллоидным растворам и что между ними нет качественных, а есть только количественные различия, зависящие главным образом от формы и величины коллоидных частиц. В этом смысле открытие броуновского движения дисперсных частиц имело очень большое значение. [c.121]

    Молекулярные коллоиды образуются путем самопроизвольного растворения ВМС в хорошем (хорошо взаимодействующем с ними) растворителе. Для понимания свойств этих растворов необходимо прежде всего кратко рассмотреть свойства самих ВМС. [c.304]

    Мы рассмотрели образование студней в процессе набухания. Дальнейшее развитие этого процесса — неограниченное набухание— приводит к растворению, к образованию растворов ВМС. Рассмотрим свойства этих растворов — молекулярных коллоидов. [c.315]

    Коллоидными электролитами мы будем называть полиэлектролиты, образующиеся в результате электролитической диссоциации ВМС, независимо от их физического состояния, а также близкие к ним по ряду свойств мицеллы или ассоциаты, возникающие в растворах ПАВ и несущие электрический заряд. Эти системы, называвшиеся ранее полуколлоидами (или семиколлоидами), можно также считать молекулярными коллоидами, но в несколько ином смысле этого термина, а именно, выражая этим определением существующее в растворах- равновесие между молекулами [c.321]

    Поскольку дисперсность существенно влияет на свойства системы, очевидно, что растворы ВМС должны обладать рядом признаков, общих с высокодисперсными гетерогенными системами. Действительно, по многим свойствам (диффузия, задержка на ультрафильтрах, структурообразование, оптические и электрические свойства) растворы ВМС стоят ближе к коллоидным системам, нежели к молекулярным растворам. Поскольку растворы ВМС диалектически сочетают свойства молекулярных растворов и коллоидных систем, целесообразно называть их, по предложению Жукова [1], молекулярными коллоидами, в отличие от Другого класса,— типичных высокодисперсных систем — су с п е н-ЗОИ до в [1].  [c.16]

    Так же как и в коллоидных растворах ПАВ, в реальных растворах высокомолекулярных соединений в равновесии находятся макромолекулы и их ассоциаты — мицеллы. Крайними случаями этого равновесия являются идеальный молекулярный раствор и лиофобный золь. Между ними возможны различные переходные системы, обладающие одновременно свойствами коллоидных систем и молекулярных растворов. Для таких систем предложен термин — молекулярные коллоиды. При обычных условиях растворы высокомолекулярных соединений по своим [c.254]

    Образование студней при неограниченном набухании — приводит к растворению, к образованию растворов ВМС. Рассмотрим свойства этих растворов — молекулярных коллоидов. [c.302]

    Глава XVI. Коллоидно-химические свойства высокомолекулярных со единений и их растворов (молекулярные коллоиды) [c.5]

    Благодаря низкой степени дисперсности в суспензиях слабо проявляется или отсутствует такое молекулярно-кинетическое свойство, как броуновское движение, а значит, и диффузия. Осмотическое давление, весьма слабо выраженное в лиофобных коллоидах, в суспензиях практически не обнаруживается, так как частичная концентрация в них еще меньше, чем в лиофобных коллоидах. Вязкость разбавленных суспензий мало отличается от вязкости дисперсионной среды. Высококонцентрированные суспензии (пасты) имеют свойства структурированных систем и характеризуются высокой вязкостью. [c.342]

    Высокомолекулярные соединения (ВМС). К ним относятся природные и синтетические полимеры с молекулярной массой от десятков тысяч до нескольких миллионов. Это белки, полисахариды, каучук, синтетические полимеры. Размер молекул ВМС соответствует частицам коллоидной степени дисперсности. Растворы этих веществ часто называют молекулярными коллоидами, однако на самом деле ВМС образуют истинные растворы, т. е. однофазные системы. От коллоидных растворы ВМС отличает большая устойчивость, связанная с наличием в их молекулах большого количества лиофильных групп, более высокая концентрация растворов, способность сухого вещества набухать и переходить в растворенное состояние. Тем не менее растворы ВМС имеют и некоторые свойства коллоидов. [c.21]

    МОЛЕКУЛЯРНО-КИНЕТИЧЕСКИЕ СВОЙСТВА КОЛЛОИДОВ [c.29]

    Высокомолекулярные вещества, растворенные в хорошем растворителе образуют термодинамически обратимые, молекулярные, гомогенные, то есть однофазные, агрегативно устойчивые системы. Однако, в плохо растворяющей или в нерастворяющей среде высокомолекулярные вещества образуют дисперсные системы со свободными поверхностями раздела, поведение которых соответствует типичным микрогетерогенным дисперсным системам. Так, макромолекулы медленно диффундируют в растворе, не проникают через полунепроницаемые мембраны. Однако по некоторым свойствам растворы высокомолекулярных соединений имеют сходство с коллоидными системами, в связи с чем растворы высокомолекулярных соединений иногда называют молекулярными коллоидами. Так, например, размеры макромолекул соизмеримы, или даже превышают размеры коллоидных частиц. Впрочем, эта соизмеримость проявляется лишь по длине макромолекул, поперечные же их размеры соответствуют размерам обычных молекул. [c.28]


    Лиофобные эмульсии термодинамически неустойчивы и требуют специальной стабилизации. Ее можно достичь тремя путями 1) созданием двойного электрического слоя, что бывает, например, в разбавленных эмульсиях 2) образованием на поверхности частиц дисперсной фазы сольватного слоя, препятствующего коалесценции 3) образованием на поверхности частиц со стороны дисперсионной среды стабилизируюпдей адсорбционной пленки, препятствующей коалесценции механически. Такие пленки могут быть образованы либо молекулярными коллоидами типа высокомолекулярных соединений (желатина, каучук), либо полуколлоидами типа мыл. Эти вещества, адсорбируясь, образуют лиогель, обладающий значительной механической прочностью. Прочность таких пленок зависит от концентрации эмульгатора. Существует оптимум структурно-механических свойств, выше и ниже которого система становится неустойчивой. Наличие такого оптимума прочности связано с подвижностью адсорбционного слоя, необходимой для покрытия случайных разрывов в пленке. В этом типе стабилизирующего действия эмульгатора хотя и [c.79]

    В отличие от частицы суспензоида макромолекула способна изменять свою форму в весьма широких пределах. Несмотря на гомогенность молекулярных коллоидов они проявляют сходство с су-спензоидами по некоторым свойствам (например, светорассеяние и др.). Общность суспензоидов и молекулярных коллоидов не исчерпывается размерами частиц. Растворы высокомолекулярных соединений легко превращаются в гетерогенные системы при незначительном изменении состава дисперсионной среды. Например, белок, растворенный в воде, при добавлении спирта переходит в лиофобный золь. [c.73]

    Следует отметить, что подобное деление коллоидных систем приближенно, так как нельзя провести резкого разграничения между суспензоидами и молекулярными коллоидами. Например, часто при взаимодействии суспензоидных частиц образуется гель со свойствами, сходными со студнями высокомолекулярных соединений. Кроме того, среди неорганических веществ много высокомоле- [c.73]

    В 30—40-х годах XX века была выяснена химическая природа первичных частиц обратимых (лиофиль-ных) коллоидов, оказавшихся макромолекулами. В связи с этим от колдюидной химии отделилась новая химическая дисциплина — физическая химия высокомолекулярных соединений. Однако в силу исторических причин, общности молекулярно-кинетических свойств лиофильных и лиофобных К0.ПЛ0ИД0В, частого образования гетерогенных структур в молекулярных коллоидах, а также существования многочисленных композиций из высокомолекулярных соединений и высокодисперсных систем (например, [c.296]

    Механизм защитного действия сводится к образованию ад-сорбцион1Юго слоя защитного коллоида на поверхности частиц гидрофобного золя, сообщающего им свойства самого защитного коллоида. Частицы суспензоидного золя оказываются покрытыми тонкой пленкой, имеющей большое сродство к растворителю и поэтому приобретают в значительной степени свойства молекулярного коллоида. Защищенные золи ведут себя по отношению к электролитам так же, как сами защитные коллоиды. Правило Шульце —Гарди здесь оказывается уже неприменимым, валентность коагулирующего иона оказывает малое влияние на количество электролйта, которое требуется для коагуляции. [c.239]

    Рассмотрены типы реакций неорганических соединений, приводящих к образованию неорганических полимеров и взаимозависимость физических свойств неорганйческих полимеров . Высказано мнение, что между неорганическими (мицеллярными) и органическими (молекулярными) коллоидами нет принципиальных различий и для них может быть разработана одна теория . На основании измерений электросопротивления сульфидов, селенидов и теллуридов Т1, 2г, Н и ТЬ найдено, что увеличение ковалентности связей происходит в направлении теллурид —селенид— сульфидПредложена классификация полициклических неорганических соединений [c.584]

    В 30—40-х годах XX века была выяснена химическая природа первичных частиц обратимых (лиофильных) коллоидов, оказавшихся макромолекулами. В связи с этим от коллоидной химии отделилась новая химическая дисциплина — физическая химия высокомолекулярных соединений. Однако в силу исторических причин, общности молекулярно-ккпстическил свойств лиофильных и лиофобных коллоидов, частого образования гетерогенных структур в молекулярных коллоидах, а также существования многочисленных композиций из высокомолекулярных соединений и высокодисперсных систем (например, резины, многие лакокрасочные материалы, стеклопластики, пено- и поропласты) предмет коллоидной химии трактуют более расширенно, чем сказано в 106, а именно, как физическую химию гетерогенного дисперсного состояния вещества, межфазовых поверхностей и высокомолекулярных соединений. [c.306]


Смотреть страницы где упоминается термин Молекулярные коллоиды и их свойства: [c.316]    [c.38]    [c.17]    [c.18]    [c.18]    [c.258]    [c.316]   
Смотреть главы в:

Химия и технология искусственных смол -> Молекулярные коллоиды и их свойства




ПОИСК





Смотрите так же термины и статьи:

ДНК молекулярные свойства

Коллоидно-химические свойства высокомолекулярных соединений и их растворов (молекулярные коллоиды)

Коллоиды

Коллоиды молекулярные

Коллоиды свойства молекулярно-кинетически

Коллоиды свойства молекулярно-кинетические

Механические свойства молекулярных коллоидов

Молекулярно-кинетические и оптические свойства коллоидов Молекулярно-кинетические свойства коллоидных систем

Молекулярно-кинетические, оптические и электрические свойства лиофобных коллоидов

Образование и свойства растворов высокомолекулярных соединений (молекулярных коллоидов)



© 2025 chem21.info Реклама на сайте