Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Константы между неорганическими соединениями

    Ирвинг, Россотти и Уильямс 2 рассмотрели экстракцию неорганических соединений в обобщенной форме. Они оценили влияние таких факторов, как агрегация ионов, сольватация, ступенчатое образование комплекса между ионом металла и неорганическими анионами или хелатообразующим реагентом, а также влияние иолимеризации в обеих фазах. Обобщенная трактовка полезна в качестве руководства при постановке экспериментов, направленных на определение природы частиц в обеих фазах. Так, определив константу распределения как функцию концентрации металла, можно найти разницу между Степенью ассоциации металла в двух фазах. [c.288]


    КОНСТАНТЫ РАВНОВЕСИЯ РЕАКЦИЙ МЕЖДУ НЕОРГАНИЧЕСКИМИ СОЕДИНЕНИЯМИ 22. Диссоциация водяного пара [c.38]

    Реакции органических кислот и оснований подобно аналогичным реакциям неорганических соединений обычно протекают быстро и обратимо. Поэтому кислотность и основность органических соединений выражаются в виде констант равновесия, которые не связаны с проблемами скорости и пути реакции. Константы кислотности и основности — это великоленный источник данных для ]юстроения и проверки теорий о связи между структурой соединения и его реакционной способностью. Эти теории ири соответствующей корректировке применимы тогда и к более сложным реакциям. [c.169]

    Первоначально в качестве комплексных соединений рассматривали неорганические комплексы с комплексообразующим ионом металла. Однако это понятие значительно шире, так что молекулярные соединения между органическими дипольными молекулами также следует считать комплексными соединениями. Педерсен [5] исследовал пикрат анилина как пример ступенчатого образования органического молекулярного соединения. В системе неорганических комплексов М представляет собой сольватированный центральный нон и МАдг—координационно насыщенный комплексный ион. Образование комплексного иона, -надо полагать, происходит во всех возможных промежуточных ступенях, причем оно связано с отщеплением соответствующего числа молекул растворителя. Комплексные соединения, образованные ионами металла и ионами растворителя (в водных растворах — это гидроксо-комплексы) представляют исключение, так как они могут образовываться непосредственно из сольва-тированных ионов металла отщеплением ионов водорода. В связи с этим важно заметить, что для трактовки равновесия в системе и для вычисления N констант равновесия не имеет никакого значения, участвуют молекулы растворителя в реакции или нет (при условии, что активность растворителя можно считать постоянной). [c.21]

    Приводимые в этой главе таблицы и поясняющий их текст призваны служить более или менее удовлетворительным введением в изучение процесса корреляции между константами ионизации веществ и их химическим строением. Мы приняли следующий порядок изложения материала органические кислоты, органические основания, неорганические соединения. При рассмотрении любой серии монофункциональных веществ сначала излагаются данные об алифатических соединениях, затем— об ароматических. Сведения о гетероциклических веществах помещены в конце соответствующей таблицы алифатических или ароматических соединений, в зависимости от того, имеют ли вещества гетеропарафиновое или гетероароматическое строение. [c.116]


    Константы равновесия реакций между неорганическими соединениями [c.21]

    При высоких температурах вещество существует в виде газа, состоящего из отдельных молекул, димеров, молекулярных комплексов, в виде частиц, нестабильных с химической точки зрения при обычных условиях, но обладающих глубоким минимумом на поверхности потенциальной энергии (благодаря чему их можно обнаружить и изучить). Физико-химические свойства этих веществ, их взаимодействие чрезвычайно интересны, но трудно поддаются экспериментальному изучению в условиях высоких температур. Между тем направление реакции и условия химического равновесия, а также теплофизические характеристики газообразных неорганических веществ могут быть рассчитаны методами статистической физики на основе знания молекулярных постоянных. В связи с этим как у нас в Советском Союзе, так и за рубежом идет интенсивное экспериментальное исследование молекулярных констант и термодинамических свойств газообразных неорганических соединений. [c.3]

    Благодаря этому оба типа ионных процессов, несмотря па противоположный заряд растущих цепей, имеют общие черты. Это проявляется в существенном влиянии полярности среды на кинетику полимеризации и в зависимости скорости элементарных стадий процесса и микроструктуры полимера от природы противоиона. Известная аналогия между катионной и анионной полимеризацией имеется и в другом отношении, а именно, в возможности полного исключения реакций обрыва, что в свою очередь приводит к близости кинетики процесса в определенных системах анионного и катионного характера. Б то же время различие в заряде активных центров обусловливает избирательную способность многих мономеров полимеризоваться только по одному из двух ионных механизмов. Склонность к анионной полимеризации типична для мономеров ряда СН2=СНХ, содержащих заместители X, понижающие электронную плотность у двойной связи, например КОз, СК, СООК, СН=СН2. В наибольшей степени к анионной полимеризации способны мономеры, содержащие два подобных заместителя, например СН2=С(СК)2 или СН2=С(М02)з. Анионная полимеризация возможна также для насыщенных карбонильных производных и для ряда циклических соединений — окисей, лактонов и др. Инициаторами анионной полимеризации являются щелочные металлы, некоторые их органические и неорганические производные (металлалкилы, алкоксиды, амиды и др.), а также аналогичные соединения металлов II группы. Заключение об анионной природе активных центров основывается не только на качественных соображениях, но и на количественном анализе экспериментальных данных с помощью правила Гаммета. Это правило связывает значения констант скоростей реакци производных бензола с характеристиками их заместителей. Оно формулируется в виде уравнения [c.336]

    В химии высоких температур вещество существует в виде газа, состоящего из отдельных молекул, димеров, молекулярных комплексов, в виде частиц, нестабильных с химической точки зрения при обычных условиях, но обладающих глубоким минимумом на поверхности потенциальной энергии. Физико-химические свойства этих веществ, их взаимодействие чрезвычайно интересны, но трудно поддаются экспериментальному изучению в условиях высоких температур. Между тем направление реакции и химическое равновесие, а также теплофизические характеристики газообразных неорганических веществ могут быть рассчитаны методами статистической физики на основе знания молекулярных постоянных. В связи с этим в последние два десятилетия идет интенсивное экспериментальное исследование молекулярных констант и термодинамических свойств газообразных неорганических соединений как у нас в Советском Союзе, так и за рубежом. Предлагаемая читателю книга представляет собой сводку молекулярных констант газообразных неорганических соединений, являющуюся во многом результатом исследований последних лет. Сюда включены данные о конфигурациях молекул, межъядерных расстояниях, частотах колебаний, энергиях диссоциации или теплотах образования более 1400 молекул. [c.3]

    Как сообщалось в предыдущем разделе этой главы, при изучении методом растворимости комплексообразования Ри (III, IV, VI) в ацетатных, оксалатных и фосфатных растворах нами были использованы соответствующие простые соединения оксалаты Ри(1П, IV, VI), натрийплутонилтрпацетат и фосфат Ри (IV). Для расчета констант нестойкости комплексных ионов плутония необходимы данные о величинах произведений растворимости указанных соединений, которые и были найдены нами в целом ряде исследований. Полученные при этом данные о растворимости простых соединений позволили не только рассчитать величины произведений растворимости этих соединений, но и выяснить механизм процессов, протекающих при растворении соединений в кислой среде. Константы равновесий, имеющих место при растворении указанных соединений, связанные определенными соотношениями с константами нестойкости комплексных ионов Ри, образующихся на промежуточных стадиях ири растворении данного соединения в неорганических кислотах, характеризуют прочность этих комплексных ионов. Кроме того, состав образующихся простых и.ли комплексных форм плутония, а также соотношение между отдельными формами зависят, как будет показано ниже, от концентрации Н+-ионов. Таким образом, приводимые в этом разделе данные дополняют сведения о химии комплексных соединений плутония в водных растворах. [c.102]


    Б первых довоенных работах (с участием О. К. Скарре,. М. М. Слуцкой, Ж. М. Шершевер) был изучен обмен водорода на дейтерий в неорганических и органических соединениях разных классов,найдены величины коэффициента обмена (коэффициента изотопного распределения), его связь с константой равновесия обменной реакции и показано, как изотопы элемента X распределяются между изотопными разновидностями соединения AX . К этому времени относится начало работ по изотопному обмену кислорода в неорганических соединениях. В этих исследованиях, выполнявшихся Е. И. Донцовой, наряду с интересными экспериментальными данными содержатся первые соображения о механизме обмена. [c.20]

    Многие реакции, которые ускоряются ферментами, могут катализироваться также кислотами или основаниями, а часто и соединениями обоих типов Хорошо изученным примером такого рода является мута-ротация — обратимое взаимное превращение а- и р-аномерных форм сахаров, в частности глюкозы [см. схему (6-75)]. Эта реакция катализируется специфическим ферментом мутаротазой, а также неорганическими кислотами и основаниями. Эти данные показывают, что между простыми кислотами и основаниями, с одной стороны, и ферментами — с другой, есть нечто общее с точки зрения каталитического действия. Поскольку многие боковые цепи аминокислот содержат кислотные и основные группы, мы приходим к вполне естественному заключению, что эти группы должны участвовать в катализе как кислоты и основания. Однако для того чтобы понять, как именно они участвуют в катализе, мы должны иметь представление о численных значениях некоторых констант равновесия и констант скорости. [c.50]

    Поскольку уравнение Гаммета приложимо к реакциям металлорганических соединений, в которых связь С—Ме принимает участие в реакционном акте, следует ожидать, что с помощью набора а-констант можно коррелировать также скорости и равновесия другой промежуточной между органической и неорганической химией группы соединений — комплексных соединений металлов, включающих органические лиганды. Возникающая в этих соединениях ковалентная или донорно-акцепторная связь между донорными центрами органических лигандов (обычно атомы О, N. 5 и др.) н ионами металлов по своей природе аналогична связи С—Ме. Ее прочность зависит от двух факторов 1) ст-связывания, которому способствует повышение эффективного отрицательного заряда на донорном центре, и 2) л-связываник, являющегося результатом включения с1 (или р)-орбит ме галла в общую молекулярную орбиту с л-иодобными электронами ненасыщенного лиганда. л-Связыванию способствует пониженная электронная плотность на донорном центре лиганда, так как при этом донором л-электронов является металл, а л-акце ггором — лиганд. [c.277]

    Наличие высокой точки кипения не является единственной особенностью ассоциирующих жидкостей. Так, например, ряд соединений, которые содержат нитро-, циано- и карбонильную группы, но не имеют реакционноспособного атома водорода, также обладают высокой точкой кипения, но по ОДНОМУ ЭТОМУ признаку их вовсе не следует относить к ассоциирующим жидкостям. А именно у этих относительно высококипящих веществ отсутствует другая характерная особенность ассоциированных жидкостей. Эта особенность состоит в значительном отклонении от теоремы соответственных состояний. Отклонения могут проявляться в различной мере, смотря по тому, какое требование предъявляют к степени точности теоремы соответственных состояний, которую хотят проверить. Эту проверку можно проводить различными ПУТЯМИ. Проще всего выполняется проверка для закономерностей, вытекающих как основные правила из данной теоремы. Указанные закономерности касаются легко определяемых свойств жидкостей, а именно правило относительно температурной зависимости поверхностного натяжения — правило Этвеша правило о соотношении между теплотой испарения и точкой кипения — правило Пикте—Трутона. Однако константы, входящие в выражения правил Этвеша и Трутона, в действительности не являются постоянными, а колеблются в той или иной степени от вещества к веществу, так что можно выявить только грубые эффекты. Значительно более точно проводить изучение с универсальным уравнением состояния, однако эти исследования требуют большого экспериментального материала. При этом, конечно, не следует основываться на сравнительно простом уравнении Ван-дер-Ваальса. Нужно использовать такие эмпирические уравнения, как уравнение Бертоле или Воля, которые лучше удовлетворяются в отношении абсолютных значений входящих в них констант, чем уравнение Ван-дер-Ваальса. Для органических соединений этот переход к универсальному уравнению состояния почти всегда невозможен вследствие недостаточного экспериментального материала, так что вообще в таких случаях приходится ограничиваться правилами Этвеша и Пикте—Трутона. Из основных неорганических прототипов органических ассоциирующих жидкостей не подчиняются универсальному уравнению состояния вода и аммиак, последний, впрочем, значительно меньше . Исключительное положение гидроксильных органических соединений, относящихся к типу воды, обнаруживается также в уравнениях состояния некоторых спиртов и карбоновых кислот для аминов нет НУЖНОГО материала. [c.237]


Смотреть страницы где упоминается термин Константы между неорганическими соединениями: [c.261]    [c.323]    [c.12]    [c.310]    [c.63]    [c.56]    [c.40]    [c.40]   
Справочник химика Том 3 Издание 2 (1964) -- [ c.42 , c.45 ]

Справочник химика Изд.2 Том 3 (1964) -- [ c.42 , c.45 ]




ПОИСК





Смотрите так же термины и статьи:

Константы ных соединений



© 2024 chem21.info Реклама на сайте