Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Соединения с углеродом, кремнием и бором . Взаимодействие с металлами

    При обычной температуре углерод, особенно алмаз и графит, химически крайне инертен. Некоторые сорта черного углерода воспламеняются в атмосфере кислорода уже при сравнительно незначительном нагревании. С фтором черный углерод реагирует уже при обычной температуре. При высоких температурах углерод соединяется с многочисленными элементами водородом, серой, кремнием, бором и многими металлами. Соединения углерода с металлами и с другими электроположительными относительно углерода элементами называют карбидами. С азотом углерод непосредственно не соединяется, однако взаимодействие происходит в присутствии водорода с образованием цианистого водорода. [c.411]


    Как уже указывалось, галогены — чрезвычайно реакционноспособные вещества. В газообразном фторе уже при комнатной температуре самовоспламеняются бром, селен, древесный уголь, йод, сера, мышьяк, сурьма, кремний, бор, щелочные и щелочноземельные металлы. При температуре красного каления фтор взаимодействует даже с золотом и платиной. Многие химические соединения под его действием разрушаются. Фтор не реагирует лишь с углеродом и азотом. Активность хлора уступает фтору. В нем воспламеняются сурьма, фосфор, сера. Он соединяется практиче- [c.417]

    Марганец широко распространен в природе. Его среднее содержание в земной коре 0,1% [414], а в золе советских нефтей 0,02—0,14% [415]. По своим химическим свойствам он несколько сходен с железом. Известны соединения, в которых его валентность равна 2, 3, 4, 6 и 7. Наиболее устойчивы соли двухвалентного марганца, а среди кислородных соединений — двуокись марганца. При нагревании он легко взаимодействует с галогенами, серой, фосфором, углеродом кремнием, бором, азотом. В канале угольного электрода окислы и карбонат марганца быстро, сульфиды медленнее восстанавливаются до металла. [c.236]

    Металлы семейства железа при нагревании взаимодействуют с кислородом, парами воды, галогенами, серой, фосфором, кремнием, углеродом и бором. Наиболее устойчивыми являются соединения железа (П1), кобальта (И) и никеля (И). [c.208]

    Реакционная способность платиновых металлов по отношению к неметаллам при обычных условиях выражена слабо. Даже при нагревании они не реагируют с азотом, галогены лишь вызывают их повышенную коррозию, водород с платиновыми металлами химически не взаимодействует и мало растворяется. Резким исключением является палладий, способный поглощать значительные количества водорода (1 объем Рс1 поглощает до 900 объемов На при комнатной температуре). При сильном нагревании платиновые металлы способны вступать во взаимодействие с халькогенами. Однако при этом образуются металлоподобные соединения, не подчиняющиеся правилам формальной валентности. Они образуют соединения также с бором, кремнием. Углерод с платиновыми металлами соединений не образует, но при повышенных температурах способен растворяться в них в значительных количествах. [c.419]

    Концентрированной азотной кислотой или царской водкой, а также при сплавлении со щелочами В окисляется с образованием борной кислоты или боратов щелочных металлов одпако расплавленная селитра при 400 на пего еще не оказывает заметного действия. Концентрированная серная кислота действует на бор лишь при 250° фосфорная кислота восстанавливается им до Свободного фосфора только при 800°. Водяным паром при температуре красного каления бор окисляется с выделением свободного водорода. С окисью азота бор взаимодействует при температуре красного каления, образуя трехокись и нитрид бора. При очень высоких температурах бор оказывается в состоянии восстанавливать также окись углерода и двуокись кремния. Благодаря своему сильному сродству к кислороду и к другим электроотрицательным элементам бор может выделять в свободном состоянии металлы из их окислов, сульфидов и хлоридов. Теплоты образования простейших соединений бора приведены в табл. 64 на стр. 358. [c.361]


    Оба металла используются в основном для получения специальных сталей. Даже малые добавки этих элементов приводят к резкому повышению твердости и прочности. Высокоскоростные стали, которые используются для изготовления режущего инструмента и сохраняют твердость при температуре красного каления, содержат вольфрам и хром. Вольфрам применяют также для изготовления нитей накала в электролампах. Молибден и вольфрам образуют твердые тугоплавкие и химически инертные соединения -замещения с бором, углеродом, азотом или кремнием при прямом взаимодействии при высоких температурах. Карбид вольфрама используется для изготовления режущих частей (наконечников) инструментов и для других подобных целей. [c.498]

    Вольфрам — один из наиболее коррозионноустойчивых металлов. При обычной температуре устойчив к действию воды и воздуха, при 400—500° С заметно окисляется, при более высокой температуре окисляется интенсивно, образуя трехокись вольфрама желтого цвета. С водородом не взаимодействует даже при очень высоких температурах, с азотом взаимодействует при температуре > 2000° С, образуя нитрид WNa. Твердый углерод при 1100— 1200° С реагирует с вольфрамом, образуя карбиды W и Wg . Свойства некоторых соединений вольфрама с кислородом, перекисью водорода, галогенами, серой, углеродом, кремнием, теллуром, бором, а также его комплексных соединений, окислов и гидроокисей см. в [1, 9, 247, 301, 383]. [c.10]

    К карбидам относятся соединения углерода с металлами и неметаллами. По характеру межатомных связей карбиды подразделяются на несколько групп. Для получения волокон представляют интерес карбиды с ковалентными межатомными связями и карбиды фазы внедрения. Кристаллические решетки последних построены из атомов металлов переходных групп, между которыми внедрены атомы углерода. Межатомные связи в карбидах фазы внедрения в известной мере подобны межатомным связям металлов. В образовании межатомных связей принимают участие электроны атомов углерода. К карбидам с ковалентными межатомными связями относятся карбиды кремния и бора, к карбидам фазы внедрения — Т1С, 2гС, УС, ЫЬС, ТаС, УС и др. Свойства некоторых карбидов приведены в табл. 7,5. Для карбидов наиболее характерны высокие температура плавления, термостойкость, твердость. Несмотря на большое содержание углерода (до 20 вес, °/о), им присущи некоторые свойства металлов — металлический блеск, электропроводность, положительный коэффициент линейного расширения, но в отличие от металлов их теплопроводность мало изменяется от температуры. Подобно металлам, карбиды способны к термоэмиссии, Карбиды обладают высокой хемостойкостью. Наиболее агрессивной по отношению к карбидам является смесь кислот НР и НЫОз (1 4). Однако неясно, происходит ли растворение карбидов в этой смеси или химическое взаимодействие с ней [55]. Пожалуй, наибольший интерес представляют высокие температуры плавления карбидов для карбидов Т1, ЫЬ, Zv, НГ эти температуры находятся [c.339]

    ГАЗОФАЗНЫЕ ПОКРЫТИЯ - покрытия, образующиеся вследствие взаимодействия паров летучих соединений металлов и неметаллов с поверхностью нагретых изделий вид защитных покрытий и покрытий спец. назначения. При формировании Г. п. происходит разложение или восстановление паров летучих соединеню с образованием твердофазных и газообразных продуктов. Твердофазные продукты оседают на поверхности изделия, образуя покрытие, а газообразные продукты, как правило, непрерывно удаляются. Газофазным осаждением наносят металлы (в особенности тугоплавкие), их сплавы, металлиды, некоторые кислородсодержащие и бескислородные тугоплавкие соединения, покрытия на основе окислов, карбидов, боридов, нитридов, силицидов, кера-мико-металлических материалов. Наряду с покрытиями на основе материалов высокой чистоты этим методом получают стехиометрические соединения, выращивают эпитаксиальные слои (см. Эпитаксия), монокристаллы. Различают процессы создания Г. п. высокотемпературные (т-ра выше 800° С) и низкотемпературные (т-ра ниже 600— 800° С). При высокотемпературном процессе образование Г. п. происходит вследствие термического разложения паров неорганических соединений, гл. обр. фторидов, хлоридов, бромидов и йодидов. Для получения покрытий в виде сплавов смешивают пары хим. соединений нескольких металлов. При нанесении тугоплавких соединений используют смесь пара, в к-рую наряду с галогенидами металлов вводят добавки, содержащие (в соответствии с получаемым соединением) углерод, азот, бор, кислород или кремний. Высокотемпературный процесс покрытия изделий ниобием из его йодида осуществля- [c.245]

    С металлами углерод вступает во взаимодействие лишь при высоких температурах, образующиеся соединения называются карбидами. Углерод образует карбиды и с неметаллами (бор, кремний), что свидетельствует об амфотерной природе его кристаллов. Все карбиды представляют собой твердые, в чистом состоянии хорошо кристаллизующиеся вещества. Они нелетучи и нерастворимы ни в одном из известных растворителей. В связи с этим истинные молекулярные массы карбидов неизвестны и для них приходится довольствоваться простейшими формулами. [c.58]


    Карбиды — это соединения углерода с металлами, кремнием, бором. Карбиды щелочных, щелочноземельных элементов (ацетилениды) представляют собой солеподобные соединения с ионным типом связи между углеродом и элементом (кратность связи между атомами углерода равна трем). Поэтому при их взаимодействии с водой образуется ацетилен  [c.258]

    При нагревании Т1, 2г, НГ становятся реакционноспособными и интенсивно реагируют с О2 (с образованием ЭО2), Га ОГ4), N2 (ЭN), С ОС), 5 (Т152, ХгЗг) и другими веществами. Соединения этих металлов с кислородом, водородом, азотом, углеродом, кремнием, бором и рядом других элементов имеют переменный состав (приводимые формулы этих соединений часто условны). Титан и цирконий взаимодействуют также с расплавленными щелочами  [c.490]

    С химической точки зрения скандий, иттрий, лантан и актиний (похожие на щелочноземельные металлы) являются активными металлами они окпсляются во влажном воздухе при комнатной температуре, превращаясь в соответствующие гидроокпси, и растворяются в разбавленных кислотах с образованием солей п выделением водорода. При нагревании скандий, иттрий и лантан взаимодействуют с кислородом, серой, азотом, углеродом, кремнием. бором ИТ. д., образуя соединения типа МегОз, МегЗз. MeN, МеСг. Ме Сз. Ме31г, МеВд. [c.22]

    Карбиды. С углеродом индий не взаимодействует, и карбид индия до сих пор не получен. Но известен ряд тройных карбидов индия с никелем, кобальтом, титаном и другими металлами, как,например, 2г21пС [73]. Соединения индия с кремнием и бором не получены. [c.297]

    Кристаллический кремний реагирует с серой с выделением света при температуре около 600°, образуя сульфид кремния 5152. С азотом он взаимодействует при 1000° с образованием нитрида 51зЫ4. С углеродом и бором кремний при 2000° образует соответствующие силициды 81С и 51Вз. При температуре краснобелого каления кремний соединяется с многими металлами, например Ы, Ве, Mg, Са, 5г, Ва, Сг, Мо, У, Мп, Ее, Со, N1, Р1, Си (силициды Ма, К, КЬ, Сз, А1, 5п, РЬ, Ag, Аи, 2п, С(1, Hg неизвестны). Многие силициды металлов представляют собой соединения внедрения с формулами, не соответствующими обычной валентности элементов. [c.504]

    Как уже указывалось, титан способен взаимодействовать с углеродом лишь при высоких температурах. В системе титан — углерод при этих условиях образуются очень твердые сплавы, содержащие карбид титана Т1С — кристаллическое металлоподобное вещество с температурой плавления 3140°С, и ряд твердых растворов. Карбид титана проводит электрический ток, легко сплавляется с металлами и другими карбидами, образуя при этом иногда чрезвычайно твердые тугоплавкие сплавы. При обычной температуре карбид титана довольно инертен, при высоких же температурах ведет себя подобно элементарному титану — реагирует с галогенами, кислородом, серой, азотом, а таклсе с кислотами и солями — окислителями с образованием продуктов, аналогичных получающимся при действии на элементарный титан. Подобные карбиду соединения титан образует с фосфором (фосфиды), кремнием (силиды), бором (бориды). [c.270]


Смотреть страницы где упоминается термин Соединения с углеродом, кремнием и бором . Взаимодействие с металлами: [c.277]    [c.196]    [c.164]    [c.164]    [c.277]    [c.103]    [c.63]    [c.111]    [c.693]    [c.478]    [c.129]    [c.75]    [c.207]    [c.529]    [c.596]    [c.40]   
Смотреть главы в:

Химия и технология редких и рассеянных элементов Том 1 -> Соединения с углеродом, кремнием и бором . Взаимодействие с металлами

Химия редких и рассеянных элементов Том 1 -> Соединения с углеродом, кремнием и бором . Взаимодействие с металлами




ПОИСК





Смотрите так же термины и статьи:

Металлы соединения

Металлы углерода

Соединения с кремнием и бором

взаимодействие с металлами



© 2025 chem21.info Реклама на сайте