Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлы повышение стойкости к коррозии

    Наиболее распространена защита алюминия и его сплавов от коррозии электрохимическим оксидированием, при котором окисление достигается действием электрического тока (см. работу 5 этого раздела). Алюминиевые изделия помещают в электролит в качестве анода, поэтому метод обработки носит название — анодное окисление, или анодирование. При анодировании на алюминии и его сплавах получают пленки толщиной 5—20 мк, а в специальных случаях до 200—300 мк. Анодирование применяется не только для защиты от коррозии и улучшения адгезии (сцепления) с лакокрасочными покрытиями, но и для декоративной отделки поверхности металла, получения на ней фотоизображений, повышения стойкости против истирания, получения поверхностного электро- и теплоизоляционного слоя и слоя высокой твердости. Твердость анодной окисной пленки на чистом алюминии 1500 кг/мм , т. е. выше, чем твердость закаленной инструментальной стали. С помощью анодных пленок алюминия изготовляют алюминиевые выпрямители и конденсаторы. В последнее время анодная окисная пленка используется как подслой для лучшего сцепления алюминия с гальваническими покрытиями (хромом, никелем, серебром и др.). [c.146]


    В отличие от большинства технически чистых металлов титан и его сплавы устойчивы в растворах хлоридов как при комнатной температуре, так и при повышенных (скорость коррозии оценивается значениями 0,02 мм/год). В большинстве органических сред титан обладает высокой коррозионной стойкостью. К таким средам относятся бензин, метиловый и этиловый спирты, толуол, фенол, формальдегид, трихлорэтан, уксусная, муравьиная, молочная, винная, лимонная, никотиновая кислоты и ряд других органических соединений. [c.191]

    Защита металла катодной поляризацией применяется для повышения стойкости металлических сооружений в условиях подземной (почвенной) и морской коррозии, а также при контакте металлов [c.503]

    Сплавы на основе железа. Само железо стойко к коррозии лишь в р-рах щелочей. Повышения стойкости добиваются с помощью легирования разл. элементами (см. Же.1еза сп.ювы). К коррозионностойким сталям относят хромистые, хромоникелевые, хромомарганцевоникелевые и хромомарганцевые. Их стойкость в разл. средах определяется структурой, а также св-вами образующихся пассивирующих поверхностных слоев (см. Пассивность металлов). При Hap>TiieHHH пассивирующей пленки в нейтральных н кислых р-рах хлоридов возникает питтинговая, щелевая и язвенная коррозия, а при т-рах больше 80 °С - коррозионное растрескивание. Для предупреждения структурно-избира-тельных видов коррозии (межкристаллитная, ножевая) стали дополнительно легируют Ti или Nb, а также снижают содержание в них С до 0.02%. [c.478]

    Функции СОЖ при резании металлов многообразны повышение стойкости режущего.инструмента, улучшение качества обрабатываемой поверхности, уменьшение силы резания и расходуемой мощности станка, обеспечение надежного удаления стружки и абразивных частиц из зоны резания, защита металлических изделий от коррозии. Для этого СОЖ должны иметь высокое смз- [c.385]

    До сих пор рассматривалась скорость коррозии, лимитируемая катодными реакциями. Однако иногда коррозия может контролироваться и анодными реакциями. Обычно это наблюдается на металлах, способных пассивироваться, таких, как хром, алюминий, титан, цирконий, никель, тантал и др. Пассивностью металла называется состояние его повышенной коррозионной устойчивости, вызванное торможением анодного процесса. Согласно термодинамическим расчетам, пассивный металл может подвергаться коррозии, но практически не корродирует из-за того, что анодное растворение его протекает крайне медленно. Например, стандартные потенциалы алюминия (Еар+/а1 = = —1,66В), циркония (Е г +/2г= —1,54 В), титана (Ет =+/т1 = = —1,63В), хрома (Есг"+/сг = — 0,74 В) значительно отрицательнее потенциалов кислородного и водородного электродов, поэтому можно было бы ожидать, что они будут корродировать как с выделением водорода, так и с поглощением кислорода. Однако они отличаются высокой коррозионной стойкостью благодаря склонности к пассивации. Пассивность в основном вы- [c.233]


    В процессе гальваностегии на поверхность металлического изделия путем электролиза наносится тонкий слой другого металла для повышения стойкости изделия к коррозии, для упрочнения его поверхности или просто для придания ему красивого внешнего вида (цинкование, хромирование, никелирование и т.д.). Гальванопластику, основы которой заложил в 30-х годах XIX в. Б. С. Якоби, используют для получения тонкостенных металлических изделий (типографских клише, матриц для прессования грампластинок, пуговиц, тиснения бумаги) электроосаждением их на рельефных катодах. [c.193]

    В конструкциях и деталях, имеющих зазоры, зачастую возникает щелевая коррозия — интенсивное растворение металла в зазоре (щели). Происходит это вследствие изменения pH среды Б щели при гидролизе продуктов коррозии. Основной метод повышения стойкости материала к щелевой коррозии — рациональное конструирование, уплотнение зазоров, выбор более стойких к щелевой коррозии материалов. [c.8]

    В промышленном масштабе диффузионные покрытия применяют для металлов со сравнительно низкой температурой плавления, в основном на железной основе. Как известно, из конструкционных материалов, применяющихся в народном хозяйстве, около 90 % составляют сплавы железа, поэтому их предохранение от коррозии является задачей первостепенной важности. Диффузионные покрытия наносят обычно в целях повышения стойкости к коррозии, высокотемпературному окислению и истиранию. Наиболее совершенные антикоррозионные слои — покрытия на основе хрома и его сочетаний с [c.136]

    Методы диффузионного насышения поверхностных слоев стальных изделий азотом, бором, кремнием, углеродом используют давно, главным образом, для повышения их контактной прочности и износостойкости, сопротивления усталости и реже для повышения коррозионной стойкости. Например, антикоррозионному азотированию можно подвергать любые стали, в том числе простые углеродистые. Процесс насыщения ведут при 600-700°С в течение 0,5-1,0 ч. При таком режиме насыщения из газообразного аммиака на поверхности изделия образуется сплошной слой, состоящий из коррозионностойкой е -фазы, защищающий металл от атмосферной коррозии, агрессивного воздействия воды и других коррозионных сред. [c.171]

    В гл. 1 были описаны некоторые способы повышения стойкости металлов к окислению, а в гл. 2 — способы повышения стойкости к коррозии в водных средах. , [c.127]

    При коррозии железа в большинстве природных условий, например, в атмосфере или нейтральных электролитах, т. е. в условиях коррозии с кислородной деполяризацией незначительные примеси в железе или изменения структуры металла существенно не влияют на скорость коррозии. Некоторым исключением является добавка в сталь меди. Установлено, что так называемые медистые стали, содержащие 0,3—0,5 % меди, имеют несколько повышенную -стойкость в атмосферных условиях. Это объясняется, с одной стороны, действием накапливающихся на поверхности стали катодных включений меди, смещающих потенциал [c.140]

    Развитие авиации, ракетостроения, увеличение мощности и повышение рабочих скоростей машин предъявляют возрастающие требования к металлическим материалам. Путь к повышению прочности металлов лежит в повышении их чистоты, уменьшении содержания примесей, ухудшающих механические свойства металла. Одной из таких вредных примесей является водород, который, проникая в металл уже в процессе его плавки, вызывает появление флокенов в стали, водородной болезни в меди и ее сплавах, пористости алюминия и его сплавов и т. д. Следующими стадиями технологического процесса обработки стали, сопровождающимися поглощением водорода, являются термическая обработка, сварка, травление в растворах кислот и занесение гальванических покрытий. Нанесение гальванопокрытий является, обычно, завершающей технологической операцией, которой подвергается большинство деталей из разных сортов сталей для предохранения их от коррозии, повышения стойкости к истиранию (хромирование) и т. д. Как показывает практика, особенно опасным является наводороживание сталей, прежде всего высокопрочных, в процессе нанесения гальванопокрытий и подготовительных операциях (обезжиривание, травление).  [c.3]

    Значение критической влажности воздуха при излучении смещается в область значений относительной влажности 15... 30 % и зависит от мощности поглощенной дозы. Минимальная доза, ускоряющая коррозию при у-и р-излучении, — 10 эВ/см с. Повышение дозы до 10 эВ/см -с для листового металла ведет к его перегреву, при котором пленка влаги на поверхности отсутствует и коррозии не происходит. Деструктирующий эффект Эдо обусловлен упругим и тепловым воздействием поверхности металла с излучаемыми частицами. Ионизирующее излучение, особенно тяжелыми частицами, приводит к появлению в структуре твердого тела различных дефектов вакансий, дислокаций, пустотелых каналов, атомов внедрения и т. д. В окисных пленках в результате воздействия излучения происходят аналогичные процессы и возникают изменения структуры оксида и поверхностного слоя металла. Возрастает скорость диффузии различных компонентов раствора через пленку и ее ионная проводимость. особенно опасен для металлов, коррозионная стойкость которых обусловлена образованием плотных защитных слоев покрытий конверсионного типа, например, окисных пленок. - [c.535]


    Кобальт применяется также для изготовления твердых литых сплавов (содержащих от 45 до 62% Со) — стеллитов, применяемых для повышения стойкости рабочих инструментов против истирания и коррозии. Идет кобальт и в металло-керамические твердые сплавы, содержащие от 3 до 15% Со. Эти сплавы требуются для буровых и других износостойких инструментов. Сверхтвердый сплав победит содержит 10% Со. Быстрорежущие стали — 5— 12% Со. [c.401]

    В заключение следует указать, что возможны и другие сочетания способов защиты оборудования от сероводородного растрескивания. Например 1) применение низколегированных сталей с повышенной стойкостью к сероводородному растрескиванию, снижение величины рабочих напряжений, термическая обработка, прибавка к расчетной толщине стенки для компенсирования потери вследствие общей коррозии 2) нанесение защитных лакокрасочных покрытий, введение ингибиторов (в этом случае металл в дефектных или разрушившихся со временем участках покрытия будет защищен действием ингибиторов) 3) термическая обработка оборудования, нейтрализация среды и т. д. [c.104]

    ПАССИВНОСТЬ МЕТАЛЛОВ, повышенная стойкость металлов против коррозии в условиях, когда термодинамически металл реакционкоспособен. Обусловлена образованием защитных поверхностных соединений при взаимодействии металла с компонентами среды в процессе анодного растворения. Переход металла в пассивное состояние наз. пассивацией, образующийся на его пов-сти слой-пассивирующим слоем. Пассивирующие слои тормозят, помимо окисления металлов, также протекание на их пов-сти электродных окислит.-восстановит. р-ций. По составу пассивирующих слоев различают оксидную П. м. и солевую (возможны слои более сложного состава). Термин П. м. нередко используют для описания торможения поверхностными слоями нек-рых др. гетерог. р-ций газовой коррозии (оксидные пленки и окалины), электрокристаллизации (адсорбц. пленки ПАВ). [c.448]

    Науглероживание распространяется на глубину 5—25 мкм и сопровождается потерей и.з повер.хностны.х слоев легирующих добавок (см. рис. а также образованием карбидов хрома и карбонилов никеля. Результатом науглероживания является резкое снижение эрозионной стойкости деталей ввиду повышенной хрупкости карбидов. Возможно и усиление электрохимической коррозии, связанной с образованием карбидов и карбонилов, имеющих неодинаковый электрический потенциал с другими соединениями. Алитирова-ние и эмалирование защищает металл от газовой коррозии (рис. 5.35). [c.181]

    Легирование никеля медью несколько повышает стойкость металла в восстановительных средах (например, в неокислительных кислотах). Ввиду повышенной стойкости меди к питтингу, склонность сплавов никель—медь к питтингообразованию в морской воде ниже, чем у никеля, а сами питтинги в большинстве случаев неглубокие. При содержании более 60—70 ат. % Си (62—72 % по массе) сплав теряет характерную для никеля способность пассивироваться и по своему поведению приближается к меди (см. разд. 5.6.1), сохраняя, однако, заметно более высокую стойкость к ударной коррозии. Медно-никелевые сплавы с 10—30 % N1 (купроникель) не подвергаются питтингу в неподвижной морской воде и обладают высокой стойкостью в быстро движущейся морской воде. Такие сплавы, содержащие кроме того от нескольких десятых до 1,75 % Ре, что еще более повышает стойкость к ударной коррозии, нашли применение для труб конденсаторов, работающих на морской воде. Сплав с 70 % N1 монель) подвержен питтингу в стоячей морской воде, и его лучше всего применять только в быстро движущейся аэрированной морской воде, где он равномерно пассивируется. Питтинг не образуется в условиях, когда обеспечивается катодная защита, например при контакте сплава с более активным металлом, таким как железо. [c.361]

    Зашита металлов от коррозии ингибиторами уже на протяжении нескольких десятилетий является одним из наиболее эффективных и рентабельных способов повышения стойкости и долговечности технологического оборудования и трубопроводов в агрессивных средах [1-7]. Применению этого способа во многих случаях не существует альтернативы как по соображениям, связанным с природой и особенностями коррозии металла в конкретных ситуациях, так и с относительной сложностью реализации других технологий. Полученные в ходе разработки и исследования ингибиторов фундаментальные результаты способствовали формированию крупного научного направления в физической химии, многие положения которого выходят за рамки этой науки, тесно соприкасаясь с органичсск-ой химией [7], нефтехимией [6], ме.ханохимией металлов [8] и принося существенную практическую выгоду при внедрении на индустриальных объектах. [c.179]

    Жаростойкость — стойкость по отношению к газовой коррозии при высоких температурах. Жаропрочность — свойства конструкционного материала сохранять высокую механическую прочность при значительном повышении температуры. Основное средство защиты металлов от газовой коррозии — легирование такими компонентами, которые улучшают свойства защитных пленок, образующихся при окислении металла. Для стали такими элементами являются хром, алюминий, кремний. Эти элементы при высоких температурах окисляются энергичнее, чем железо, и образуют при этом плотные защитные пленки оксидов. Хром и кремний улучшают также жаропрочность сталей. Стали, легированные 4—9% хрома, молибденом или кремнием, применяют, например, в парогенераторо- и турбостроении. Сплав, содержащий 9—12% хрома, применяется для изготовления лопаток газовых турбин, деталей реактивных двигателей, в производстве двигателей внутреннего сгорания и т. п. [c.218]

    Во втором издании (первое - в 1986 г.) рассмотрены основные положения теории коррозии металлов и сплавов. Проанализировано влияние условий эксплуатации на коррозию конструкционных сплавов. Изложены принципы создания металлических сплавов повышенной стойкости. Приведены свойства важнейших конструкционых материалов, в том числе данные по жаропрочным и жаростойким конструкционным сплавам. Указаны способы повышения коррозионной стойкости поверхностное легирование, создание металлокерамических сплавов, получение сплавов в аморфном состоянии, современные методы борьбы с газовой коррозией. [c.160]

    Применения более дорогих трубок (из сплавов МНЖМцЗО-1-1, МН10) можно во многих случаях избежать, если принять меры для повышения стойкости металла против коррозии и эрозии, в частности, при обработке охлаждающей воды соединениями железа (вследствие образования при этом прочной и плотной оксидной пленки на поверхности трубок с водяной стороны кор- [c.203]

    По своей коррозионной стойкости к сталям 12Х1МФ и 12Х2МФСР близка также сталь ЭИ-531 при температурах до 580°С. При температурах выше 580°С начинается резкое повышение глубины коррозии стали ЭИ-531. Такое поведение стали ЭИ-531 можно объяснить ее особенной чувствительностью к периодическому охлаждению [Л. 239]. Оксидная пленка при температурах 500—550 С у стали ЭИ-531 довольно равномерно покрывает металл. Толщина оксидной пленки, образовавшейся при температуре 545°С в течение 1500 ч, примерно равна 0,25 мм и располагается послойно. Отдельные слои оксидной пленки обладают почти одинаковой микротвердостью — 700 кгс/мм . На образцах, испытанных при температурах 580 и 620°С, наблюдалось слоистое рыхление оксидных пленок, особенно при 620°С, при которой оксидная пленка почти полностью отслаивалась. [c.254]

    Рассмотрены основные положения теории коррозии и пассивности металлов и сплавов. Описан механизм наиболее опасного вида коррозии — локальной, а также коррозии при одновременном воздействии механических напряжений. Показано влияние условий эксплуатации на коррозионное поведение конструкционных сплавов. Изложены принципы создания металлических сплавов повышенной стойкости. Описаны свойства важнейших конструкционных коррозионностойких сплавов. Указаны способы повышения коррозионной стойкости сплавов специального назначения поверхностным легированием, созданием металлокерами ческих композиционных материалов, получением сплавов в аморфном состоянии. [c.2]

    Среди других мер защиты металла от коррозионного повреждения (ингибирование, поверхностные покрытия) реально осуществимым шагом является термообработка труб - один из эффективных методов повышения стойкости металла к коррозии под механическим напряжением. При этом режимы термообработки для конк эегных видов труб должны выбираться с учетом особенностей коррозионной среды и механизма коррозии, характерных для условий Самотлорского месторождения. [c.487]

    Во ВНИИживмаш проведены исследования, позволявяцие установить допустимые и недопустимые контакты металлов в средах животноводческого производства. Целью работы явилось повышение стойкости машин и оборудования для животноводства и кормопроиз водства к контактной коррозии. [c.85]

    КИСЛОТОСТОЙКИЕ МАТЕРИАЛЫ — материалы, отличающиеся повышенной кислотостойкостью, вид химически стойких материалов. В пром. масштабах используются с середины 18 в. Различают К. м. металлические и неметаллические. К металлическим К. м. относятся сплавы на основе железа, а также цветные металлы и их сплавы (см. также Кислотостойкие сплавы). Кислотостойкие сплавы на основе железа углеродистые стам (нелегированные, низколегированные), содержащие до 1% С высоколегированные стали, имеющие в своем составе хром, никель, медь, марганец, титан и др. хим. элементы чугуны (нелегированные, высоколегированные), содержащие более 2,5—2,8% С. Кислотостойкие цветные металлы никель, медь, алюминий, титан, цирконий, олово, свинец, серебро, ниобий, тантал, золото, платина и др. Углеродистые стали стойки в растворах холодной азотной к-ты (концентрация 80—95%), серной к-ты (выше 65%) до т-ры 80° С, в плавиковой к-те (выше 65%), а также в смесях азотной и серной к-т. На углеродистые стали сильно действуют органические к-ты (адипиновая, муравьиная, карболовая, уксусная, щавелевая), особенно с повышением их т-ры. Высоколегированные стали, отличаясь повышенной стойкостью к коррозии металлов (см. также Коррозионностойкие материалы), являются в то же время кислотостойкими. Большинство легирующих добавок значительно повышают кислотостойкость сталей. Так, медь придает хромоникелевым сталям повышенную стойкость к серной к-те. Сталь с 17—19% Сг, 8-10% Мп, 0,75-1% Си, 0,1% С и 0,2—0,5% Si стойка в азотной к-те (любой концентрации и т-ры вплоть до т-ры кипения) и многих др. хим. соединениях (см. Кислотостойкая сталь). Кислотостойки высоколегированные чугуны никелевые, хромистые (см. Хромистый чугун), алюминиевые (см. Чугалъ), высококремнистые (ферросилиды), хромоникель-медистые (см. Нирезист), хромони-келькремнистые (никросилал). Наиболее распространены ферросилиды [c.586]

    Магний еще в большей степени, чем алюминий, склонен к сильному повышению скорости коррозии под влиянием посторонних примесей в структуре сплава, а также контакта с другими металлами. Это объясняется, с одной стороны, сильно отрицательным электрохимическим равновесным и стационарным потенциалом магния, более отрицательным, чем у других конструкционных металлических сплавов. С другой стороны, магний и его сплавы так же, как и алюминий, имеют отрицательный дифференциальный эффект, т. е. увеличивают скорость саморастворения под влиянием анодной поляризации в растворах хлоридов. Поэтому даже незначительные загрязнения чистого магния металлами, имеющими низкое перенапряжение водорода, такими, как Fe, Ni, Со, u, сильно понижают его коррозионную стойкость. Установлено, например, что скорость коррозии технического магния (чистоты 99,9%) в 0,5 и. растворе Na l в сотни раз больше, чем магния высокой чистоты (99,99 %). В связи с этим даже для технического магния (марки Мг—96) чистоты 99,96 % установлены предельные концентрации примесей, % 0,002 Си 0,004 Fe  [c.272]

    Лакокрасочные материалы, содержащие в качестве наполнителя цинковый и алюминиевый порошки, относят к группе протекторных покрытий. Для изготовления цинкнаполненных лакокрасочных материалов используют различные связующие эпоксидные, полиуретановые, хлоркаучуковые смолы, а также в некоторых случаях связующие на неорганической основе — силикаты щелочных металлов кремнийорганических смол. Благодаря повышенной стойкости к атмосферной коррозии и к действию влаги, конденсирующейся из газового пространства резервуара, к нефтяным продуктам и органическим растворителям эти протекторные покрытия при высококачественном [c.354]

    И определяющей неоднородность металла, главным образом, микрохимическую и его структурную неравномерность, в частности, при образовании структур закалочного типа. Метастабильные сплавы (высокопрочные алюминиевые сплавы, высоколегированные стали, циркониевые сплавы и др.) для повышения стойкости сварных соединений против коррозии требуют оптимальных видов и параметров режима сварки и послесварочной обработки. [c.510]

    К числу преимуществ лакокрасочных покрытий перед другими средствами защиты от коррозии относятся широкий ассортимент лакокрасочных материалов, их высокая эластичность, вследствие которой защитная пленка может следовать за всеми изменениями величины и формы металла, вызванными температурными колебаниями, высокие декоративные качества и т. д. Антикоррозийные краски поступают в продажу в широком ассортименте. Ингибиторами коррозии являются следующие пигменты сурик, цинковый крон, цинковая пыль, железоокисные пигменты, алюминиевый порошок и др. С 1958 г. фирма National Lead o. выпускает основной силикохромат свинца — пигмент с повышенной стойкостью к коррозии. Ниже приводится состав этого пигмента (%)  [c.444]

    Влияние химического состава и структуры металла. Химический состав металла играет очень большую роль в коррозии. Имеется целый ряд сплавов железа (нержавеющие стали, медистые стали и т. д.), которые значительно лучше противостоят коррозии, чем чистое железо. Устойчивость нержавеюш их сталей против коррозии объясняется прочностью и однородностью пленки окисей, образующихся на их поверхности. (В сильных восстановительных средах нержавеющие стали не являются устойчивыми против коррозии.) Медистые стали при соприкосновении с растворами солей также не более устойчивы, чем обычные стали. Но мецистые стали устойчивы в атмосферных условиях. Повышенная стойкость их против атмосфер- [c.178]

    В предыдущих разделах было показано, чго прочность стальных деталей, работающих в условиях коррозионной усталости, зависит глав-III,1М образом от стойкости поверхности металла к местной коррозии, вызываемой разностью нат1ряжений на отдельных участках. В связи с этим анодные покрытия цинком и отчасти кадмием, обеспечивающие электрохимическую защиту стали от ]соррозии, оказываются весьма эффективными в повышении коррозионно - усталостной прочности стали. Этот вопрос подробно рассматривается ниже. [c.100]

    Защита металла катодной поляризацией применяется для повышения стойкости металлических сооружений в условиях подземной (почвенной) и морской коррозии, а также при контакте металлов с агрессивными химическими средами. Она является экономически оправданной в тех случаях, когда коррозионная среда обладает достаточной электропроводностью, и потери напряжения, (связанные с протеканием защитного тока), а следовательно, и расход электроэнергии сравнительно невелики. Катодная поляризация защищаемого металла достигается либо наложением тока от внешнего источника (катодная защита), либо созданием макрогальванической пары с менее благородным металлом (обычно применяются алюминий, магний, цинк и их сплавы). Он играет здесь роль анода и растворяется со скоростью, достаточной для создания в системе электрического тока необходимой силы (протекторная защита). Растворимый анод при протекторной защите часто называется жертвенным анодом . [c.480]


Смотреть страницы где упоминается термин Металлы повышение стойкости к коррозии: [c.342]    [c.16]    [c.46]    [c.129]    [c.477]    [c.627]    [c.756]    [c.98]    [c.287]    [c.15]    [c.99]    [c.471]   
Защита от коррозии на стадии проектирования (1980) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Коррозия металлов

Коррозия металлов коррозии

Повышение pH при коррозии

Стойкость повышение



© 2025 chem21.info Реклама на сайте