Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углерода двуокись относительная

    Радиоактивный изотоп углерода i интересен тем, что благодаря ему можно установить возраст древностей, содержащих углерод. Двуокись углерода из атмосферы содержит небольшое количество i , образовавшегося в результате воздействия космических лучей на азот. Поскольку период полураспада изотопа 1 С относительно короток (см. выше), в атмосфере на протяжении тысячелетий устанавливается равновесная концентрация СОг, так что отношение СОг/ СОг постоянно. Количество содержащегося в 1 г углерода (органическое соединение), поступившего из атмосферного СОг, является источником 16 расщеплений в 1 мин. Хотя и очень слабая, но эта радиоактивность может быть измерена при помощи счетчика Гейгера—Мюллера. Отношение i /i сохраняется неизменным в веществах растительного и животного происхождения столько времени, сколько они участвуют в жизнедеятельных процессах, и органическое вещество непрерывно обновляется за счет атмосферной двуокиси углерода. После прекращения жизнедеятельности содержание С уменьшается по законам радиоактивного распада, т. е. уменьшается на половину после 5600 лет, на четверть после И 200 лет и т.д. Таким образом, по данным измерения радиоактивности можно установить возраст материалов, содержащих углерод, таких, как деревянные изделия, старые мачты, кости, уголь и другие, в возрасте от 400 до 30 ООО лет. Эту методику в настоящее время широко используют в археологии. [c.772]


    Описанная схема может быть как упрощена, так и усложнена. Если выделившуюся двуокись углерода вместе с парами воды сбрасывать в атмосферу, холодильник 2 над регенератором может быть исключен потребуется лишь подпитка свежей водой для ее компенсации. При очистке под низким давлением или при относительно низком удельном расходе поглотителя возврат энергии в турбине 5 незначителен, и от турбины можно отказаться, заменив ее дросселем. Схема существенно упрощается при использовании физического поглотителя, когда температура в регенераторе не отличается от [c.115]

    Высокотемпературная паровая конверсия СО, превращающая окись углерода и пар в двуокись углерода и водород, увеличивает эффективность использования водорода и вследствие этого применяется на большинстве аммиачных установок. Низкотемпературная конверсия СО — относительно новый процесс, который требует применения чистого газа и пара, а также современной технологии производства катализаторов. В процессе происходит небольшое увеличение концентрации водорода, но главное его преимущество заключается в снижении содержания окиси углерода до такого уровня, который позволяет исключить применение дорогостоящего абсорбционного оборудования. Метанирование (получение метана в реакции СО и СОа с водородом) не является новым процессом, но его применение в производстве синтез-газа для аммиака стало возможным после разработки низкотемпературных катализаторов паровой конверсии СО. [c.117]

    Переходя к окислению метана [1J, Норриш предполагает, что в условиях этой реакции дальнейшее превращение промежуточного формальдегида в основном происходит по приведенной выше схеме с внесением в нее двух упрощений. Во-первых, можно пренебречь реакцией 3, так как при окислении метана концентрация кислорода велика, а формальдегида — относительно мала, и, следовательно, вероятность встречи атома водорода с формальдегидом тоже мала. Во-вторых, можно пренебречь реакцией 6 по сравнению с реакцией 5, так как из опыта известно, что при окислении метана окись углерода всегда образуется в значительно больших количествах, чем двуокись углерода. [c.278]

    Коррозионная агрессивность продуктов транспорта трубопроводов неочищенного газа определяется помимо температуры, рабочего давления газа и парциальных давлений кислых составляющих относительной влажностью. При отклонениях от оптимальных режимов или с течением времени влажность в трубопроводе может превысить допустимые ограничения и продукты транспорта могут стать в значительной степени агрессивными. При абсолютном исключении повышения влажности в трубопроводе осушенный газ, содержащий двуокись углерода и сероводород, обладает минимальной коррозионной агрессивностью. [c.183]


    Фтор, бром, хлористый и фтористый водород не вызывают коррозионного разрущения латуней в отсутствие влаги при обычной температуре. Двуокись серы при концентрации выше 0,9% и относительной влажности воздуха выше 70% приводит к образованию окиси меди. Латуни с повышенным содержанием цинка более устойчивы к сероводороду, чем чистая медь и красная латунь влага уменьшает скорость коррозии, а высокая температура ее повышает. Во влажном сероводороде при 100°С мунц-металл и адмиралтейская латунь корродируют со скоростью 29—37 г/м -24 ч. При обычной температуре двуокись углерода только в присутствии влаги вызывает незначительную коррозию с образованием основных карбонатов меди, в то время как при высоких температурах образуется окись.цинка. Азот не вызывает коррозию, а аммиак действует как в жидкой, так и в газовой фазе в присутствии влаги, способствуя возникновению коррозионной усталости. [c.121]

    Если известно, какие элементы входят в состав соединения, то дальше следует определить их соотношение. Для этого необходимо провести в основном такой же анализ, как и раньше, но только количественный. Чтобы определить относительные количества углерода и водорода в метане, например, необходимо полностью окислить точно измеренное количество метана и взвесить образующиеся двуокись углерода и воду. [c.69]

    Кислород-18. Масс-спектрометрический метод в настоящее время почти полностью вытеснил метод определения О , основанный на определении плотности воды [40]. Воду анализируют путем изотопного уравновешивания с двуокисью углерода с последующим определением относительного содержания 0 в ней [41, 42]. Для целей изотопного анализа использовали метод [43] определения кислорода в органических соединениях путем превращения их в двуокись углерода [44, 45]. Для этой же цели можно применить также методику сожжения в ампуле [31, 32]. Показано, что многие органические вещества можно изотопно уравновесить с двуокисью углерода, если использовать в качестве катализатора обменной реакции серную кислоту. Имеются основания полагать, что в скором времени стандартные изотопные анализы можно будет проводить при помощи методов инфракрасной спектроскопии [40]. [c.24]

    Как следует из приведенных зависимостей, сопротивление массопередаче зависит не только от скорости процесса, т. е. от коэффициентов ко и кц, но и от природы смеси — степени растворимости компонента в жидкости или от относительной его летучести, определяемой величиной коэффициента in. Например, для малорастворимых газов основное сопротивление массопередаче сосредоточено в жидкой фазе, а для хорошо растворимых газов — в газовой фазе. Такими характерными Смесями, наиболее часто используемыми для экспериментального изучения коэффициентов массопередачи, являются вода — воздух — двуокись углерода (т = 1 00) и вода — воздух — аммиак (т = 1). [c.67]

    Полиэтилен — термопластичный полимер с относительно невысокой твердостью, не имеющий запаха и вкуса. Различные методы исследования (микроскопический, рентгено- и электронографический и др.) показывают, что полиэтилен обладает кристаллической структурой, аналогичной структуре нормальных парафинов (например, С60Н122 и др.). Степень кристалличности полимера, получаемого полимеризацией этилена, не достигает 100% наряду с кристаллической фазой всегда содержится аморфная. Соотношение этих фаз зависит от способа получения полимера и температуры. Подобно высокоплавким воскам и парафинам он медленно загорается и горит слабым пламенем без копоти. В отсутствие кислорода полиэтилен устойчив до 290° С. В пределах 290—350° С он разлагается на низкомолекулярные полимеры типа восков, а выше 350° С продуктами разложения являются низкомолекулярные жидкие вещества и газообразные соединения — бутилен, водород, окись углерода, двуокись углерода, этилен, этан и др. [121]. [c.35]

    Двуокись углерода из газа для синтеза аммаака чаще всего предварительно вымывается водой при повышенном давлении (10—30 ат).- Использование относительно большой растворимости СОг в воде (и малой растворимости На и Na) является основой зтого метода. Расширение водного раствора, покидающего скруббер, в турбине позволяет нагнетать воду для повторной абсорбции СОг (рис. IX-2). Вследствие этого нагрузка электродвигателя 6, приводящего в движение насос 5, уменьшается на 30—50%.Вода из турбины поступает на предв-арительную дегазацию, поскольку отходящий газ, содержащий 60% Oj и 40% Нг и Nj, можно вернуть на первую ступень компрессора и затем в производство. Благодаря этому не только уменьшаются потери водорода, но одновременно после конечного дегазатора, помещенного на регенерационной башне, получается чистый Oj ( 98—99%). Двуокись углерода такой чистоты можно применять в производстве мочевины (см. стр. 379) или сухого льда. В данном случае разность давлений используется как движущая сила для выполнения работы нагнетания. [c.353]


    Жирботол-процесс . Если в кислых СНГ количество HjS относительно велико, то удобнее и экономичнее применять экстракцию моно- или диэтаноламином, которые регенерируются в специальном резервуаре в процессе паровой десорбции при нагреве до 95 °С и возвращаются для повторного использования. Извлечение H2S осуществляется при температуре 40—60 °С и давлении, соответствующем упругости паров, противотоком в колонке с насадкой. Этот метод позволяет отказаться от применения водных растворов щелочей, эффективно удаляет двуокись углерода и элементарную серу, но недостаточно результативен в отноще-нии извлечения меркаптанов. Иногда встречаются схемы демеркаптанизации СНГ, состоящие из двух последовательных операций аминовой экстракции и отделочной стадии, щелочной отмывки или Мерокс-экстракции (последняя для извлечения меркаптанов).  [c.23]

    Очистка редких газов от некоторых сопровождающих примесей (кислород, азот, двуокись углерода, водяные пары) может быть проведена химическими методами и не вызывает затруднений. Вазделеаие смеси редких газов друг от друга в оановном осуществляется с применением физических методов адсорбции и фракционированной конденсации и дистилляции. При этом а каждом отдельном случае необходимо учитывать относительные количества индивидуальных газов в смеси и другие условия. Вследств-ие этого существующие методы очистки и разделения редких газов в основном разработаны для частных случаев в других случая , требуется изменение методики работы.. [c.294]

    Один грамм галловой ки1Слоты раство ряется в ЮО мл эфира, в 87 мл воды при 25 °С ш в 3 мл кипящей воды. Галловая кислота обладает восстанавливающими свойствами и ее н-пропиловый эфир (т. пл. 150 °С) применяют в качестве антиокислителя жиров и масел. Галловая кислота при нагревании легко отщепляет двуокись углерода и превращается в пирогаллол. Декарбоксилирование при относительно низких температурах является характерной особенностью о-ип-феноло-кислот, но не лг-феноло кислот. Вероятно, это обусловлено тем, что перемещение протона от карбоксильной группы в кольцо очень облегчается гидроксилом, находящимся в орто- или пара-положении (за счет [c.352]

    При 20 °С и давлении 1,013-10 Па в 1 м N-метилнирропидона растворяется 4 м СОг) растворимость сероводорода в 12 раз больше, поэтому N-метилнирролидон можно применять для селективного извлечения сероводорода из газов, содержащих двуокись углерода. N-метилпирролидон не токсичен и нй обладает корро-зион-ной активностью. Недостаток его, как и большинства растворителей, применяемых для абсорбции двуокиси углерода, — относительно высокая стоимость. [c.267]

    В работе автора синтеза имеются указания относительно окисления кислоты как щелочным раствором перманганата, так и хромовой кислотой. При этом им выделены нерадиоактивная двуокись углерода и бензойная-С кислота с выходами соответственно 85,2 и 77,77о. Молярная удельная активность бензой-ной-С кислоты не отличается от активности исходного вещества. Эти данные опровергают некоторые из предполагаемых механизмов реакции [3], включающих миграцию фенильной группы, которая имеет место в случае перегруппировки бензил — бензиловая кислота. Кроме того, они подтверждают внутримолекулярную миграцию атома водорода [3, 4], которая предполагается в качестве одного из вариантов объяснения механизма реакции Канниццаро. Дёринг [3] окислял миндальную-а-С кислоту перманганатом как в нейтральном, так и в кислом растворе с последующим декарбоксилированием образовавшейся бензой-ной-С кислоты по реакции Шмидта (выход 32,2%). [c.151]

    В работе авторов синтеза имеется указание относительно декарбоксилирования [5] Сложного эфира путем нагревания с 20%-ной серной кислотой в течение 5 час. на паровой бане в установке, продутой азотом. Двуокись углерода-С выделяют в виде карбоната-С бария -(выход 100,1 % ). Реакционную смесь разбавляют спиртом, затем нагревают до полного растворения и охлаждают до температуры 50 , причем выкристаллизовывается небольшое количество 1-(2-инданилиден-2-С )-инданона- [c.524]

    Сжиженная двуокись углерода обычно используется в качестве охлаждающего агента в холодильных машинах для создания сверхнизких температур, а также при производстве безалкогольных напитков, шипучих вин и пива. В медицинской практике сжиженный углекислый газ нашел применение как анестезирующее и прижигающее средство при лечении некоторых кожных заболеваний [16]. По сравнению с другими газами двуокись углерода растворяется в воде, а также реагирует со многими химическими веществами. Чистая двуокись углерода не реагирует с металлами и не имеет склонности к реакциям восстановления и окисления. Двуокись углерода — не токсичный и не раздражающий дыхательные пути газ он нашел применение в качестве про-пеллента в косметических, фармацевтических и пищевых аэрозолях. Жидкая двуокись углерода не огнеопасна, не дает в смеси с воздухом взрывоопасных смесей, относительно дешева и доступна. [c.225]

    Кинетика окисления этилена на серебряном катализаторе исследовалась в изотермическом режиме (при 218 °С) в безгра-диентном реакторе в широком интервале концентраций этилена, кислорода, окиси этилена, воды и двуокиси углеро-дд87, 88, 08, 110, 111 j pjj выводе кинетических уравнений было учтено стационарное течение процесса, использованы представления теории адсорбции Лангмюра и сделано несколько предположений относительно механизма процесса, близкого к иредлол< ен-ному ранее . Считается, что адсорбированный молекулярный кислород быстро распадается иа атомы, покрывающие большую часть поверхности катализатора. Затем атомарный кислород взаимодействует с этиленом, образуя одновременно окись этилена, двуокись углерода и воду. Эти продукты адсорбируются на поверхности катализатора и уменьшают каталитический эффект серебра. [c.285]

    Возможно, что наиболее резкая разница между а- и 3-кислотами прояв-. 1яется в их отношении к реакции декарбоксилирования. а-Карбоксильная группа по сравнению с р-карбоксильной группой того же соединения будет всегда легче терять двуокись углерода. Однако легкость, с которой проходит такое декарбоксилирование, зависит от относительного положения, занимаемого карбоксильными группами. Так, фуран-2,3-дикарбоновая кислота легко теряет свою а-карбоксильную группу при простом нагревании, в то время как -карбоксильная группа фуран-2,4-дикарбоновой кислоты удаляется только при нагревании с медью и хинолином. [c.155]

    Пиррол-а-карбоновая кислота выделяет двуокись углерода при 192° [70], а р-кислота разлагается при 161 —162° [71]. Это обстоятельство указывает на ограниченность применения имеющихся грубо установленных данных тто декарбоксилированию, так как обычно при реакциях замещения а-положение более активно, чем -положение. Пиррол вообще более активен, чем фенол, так как реакции декарбоксилирования протекают при указанных относительно низких температурах. Сравнение показывает, что по устойчивости пирролкарбоновые кислоты стоят ближе к резорцинкарбоновым кислотам, чем к соответствующим производным фенола эту аналогию подтверждает вообще легкая замещаемость у соединений ряда пиррола. Повидимому молекула пиррола не столь активна, как молекула флороглюцина. [c.234]

    Вскоре стало ясно, что поглощаемый объем зависит и от сорта угля и от того, какой газ поглощается. Предположив, что адсорбционная способность твердого тела зависит от площади его доступной поверхности, де Соссюр [3] в 1814 г. выразил наш взгляд на это явление. А в 1843 г. Митчерлих [4] отметил особую роль угольных пор и предположил, что их диаметр в среднем должен составлять 10 мк. Он рассчитал, что двуокись углерода конденсируется в слоях толщиной 0,005 мм, причем ее плотность приближается к плотности жидкой двуокиси. Эти два фактора, удельная поверхность и пористость (или объем пор), действуют в явлениях адсорбции совместно, и не только на угле, но и на большом ряде других твердых тел. Поэтому измерения адсорбции газов и паров позволяют получить информацию относительно удельной поверхности и структуры пор твердого тела. Следующие главы посвящены детальному рассмотрению способов реализации этой возможности. [c.9]

    Состав полученного оловянного концентрата зависит от сырья и еще от того, каким способом этот концентрат получали. Содержание олова в нем колеблется от 40 до 70%. Концентрат направляют в печи для обжига (при 600— 700° С), где из него удаляются относительно летучие примеси мышьяка и серы. А большую часть железа, сурьмы, висмута и некоторых других металлов уже после обжига выщелачивают соляной кислотой. После того как это сделано, остается отделить олово от кислорода и кремниь. Поэтому последняя стадия производства чернового олова — плавка с углем и флюсами в отражательных или электрических печах. С физико-химической точки зрения этот процесс аналогичен доменному углерод отнимает у олова кислород, а флюсы превращают двуокись кремния в легкий по сравнению с металлом шлак. [c.43]

    В стабили.чирующей струе использовались различные 1азы. В частности, в качестве стабилизирующего газа использовались воздух, пропан, пропано-воздушные смеси, кислород, азот, аргон, гелий, двуокись углерода и продукты сгорания. В той или иной степени все эти газы выполняли стабилизирующие функции, хотя эффективность их была неодинаковой. Ниже кратко рассматриваются их относительные преимущества. [c.319]

    Дальнейшее доказательство наличия такой конкуренции дают остальные опыты, приведенные в табл. 1, при которых содерл<а-ние двуокиси азота изменяли в различных условиях опытов. Поскольку в литературе сообш,алось [5] о взрыве смеси циклогексана и двуокиси азота, содержавшей 70 люл. % последней, для снижения взрывоопасности при отношении двуокись азота циклан более 0,13 применяли растворитель, например уксусную кислоту или четыреххлористый углерод. Как правило, повышение содержания двуокиси азота при постоянном давлении кислорода ведет к уменьшению выхода двухосновной кислоты. Выводы из этих результатов относительно механизма реакции рассмотрены ниже. [c.308]

    Данных о кислотно-основных свойствах поверхности двуокиси относительно немного. В водной среде двуокись ведет себя как слабая кислота, что проявляется в адсорбции NaOH, но имеются также доказательства основности поверхностных гидроксильных групп они взаимодействуют с муравьиной кислотой [109]. По-видимому, основные свойства преобладают. Двуокись тория давно известна как катализатор дегидратации данные по этому вопросу обобщены Уинфилдом [31]. Кроме того, двуокись тория катализирует некоторые реакции окисления, например окисление окиси углерода [ПО]. Однако ее значение как катализатора окисления невелико. [c.76]

    Установлено, что поверхности этих активных окисей восстанавливаются окисью углерода. Поэтому возможно, что катализ осуществляется с попеременным восстановлением и окислением поверхности. Этот механизм был предложен Бентоном [161] для окисления на двуокиси марганца. Как скорость восстановления несмешапнога катализатора, так и скорость каталитического окисления на нем пропорциональны давлению окиси углерода. С точки зрения более поздних данных этот механизм, по-видимому, маловероятен при использовании О было показано [162], что скорость восстановления поверхности в 10 раз меньше скорости каталитического окисления. Трудно понять, как добавка кислорода может изменять скорость восстановления поверхности, в особенности если было установлено, что окись углерода, содержащаяся в воздухе, извлекает с поверхности [163] относительно небольшое количество О . Другие механизмы включают реакцию между газами, хемосорбирован-ными на поверхностях окисей, или реакцию между окисью углерода из газовой фазы и кислородом, в той или иной форме хемосорбированным на поверхности. Стоун [164] подверг анализу результаты исследований, проведенных многими учеными, включая ученых бристольской школы, и показал, что имеется качественная связь между активностями различных окисей и их полупроводниковыми свойствами. Наиболее активны окиси р-тииа, дающие измеримые скорости окисления при низких температурах, в некоторых случаях ниже 50°. К их числу относятся двуокись марганца и некоторые из окисей, используемых в гопкалитах. Следующими па активности являются окиси п-типа — окись железа, окись цинка и двуокись титана, действующие в интервале 150—400°, но некоторые собственные полупроводники, вроде окисей меди и хрома, также [c.329]


Смотреть страницы где упоминается термин Углерода двуокись относительная: [c.225]    [c.656]    [c.133]    [c.178]    [c.206]    [c.356]    [c.656]    [c.430]    [c.60]    [c.263]    [c.54]    [c.45]    [c.292]    [c.191]    [c.370]    [c.494]    [c.72]    [c.73]    [c.73]    [c.133]    [c.277]   
Справочник по разделению газовых смесей методом глубокого охлаждения (1963) -- [ c.97 ]




ПОИСК







© 2025 chem21.info Реклама на сайте