Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свойства переходных металлов III-—VII групп

    Медь, серебро и золото несколько выпадают из общей для переходных металлов закономерности по своему электронному строению с валентной конфигурацией Они характеризуются более низкими температурами плавления и кипения, чем предшествующие им переходные элементы, и являются довольно мягкими металлами. Проявление таких свойств соответствует закономерной тенденции к ослаблению металлических связей, обнаруживаемой начиная с группы У1Б(Сг-Мо- У). Эта тенденция объясняется постепенным уменьшением числа неспаренных -электронов у атомов металлов второй половины переходных рядов. Медь, серебро и золото обладают очень большой электро- и теплопроводностью, поскольку их электронное строение обусловливает высокую подвижность 5-электронов. Эти металлы ковки, пластичны и инертны и могут находиться в природе в металлическом состоянии. Они встречаются довольно редко и поэтому имеют высокую стоимость, но все же распространены значительно больше, чем платиновые металлы. Относительно большая распространенность и возможность существования этих металлов в природе в несвязанном виде послужили причиной того, что они явились первыми металлами, с которыми познакомился чёловск и кошрые иН научился обрабатывать. По-видимому, первым металлом, который стали восстанавливать из его руды, была медь. Металлургия началась с открытия того, что сплав меди с оловом (естественно встречающаяся примесь) дает намного более твердый материал - бронзу. Медные предметы были найдены [c.446]


    Элементы побочной подгруппы III группы скандий 8с, иттрий У, и лантан Ьа относятся к редким и рассеянным металлам. До недавнего времени они не находили широкого применения. По электронному строению они относятся к переходным металлам, поскольку содержат на внешней оболочке один ( -электрон, однако по свойствам напоминают скорее щелочноземельные металлы. Все они сильно электроположительны и практически всегда проявляют одну степень окисления +3. Щелочные свойства гидроксидов этих металлов усиливаются от скандия к лантану (гидроксид лантана — сильное основание). [c.153]

    Многие соединения платины, кобальта и других переходных металлов имеют необычные эмпирические формулы и часто ярко окрашены. Они называются координационными соединениями. Их главным отличительным признаком является наличие двух, четырех, пяти, шести, а иногда большего числа химических групп, расположенных геометрически правильно вокруг иона металла. Такими группами могут быть нейтральные молекулы, катионы или анионы. Каждая группа может представлять собой независимую структурную единицу, но нередки и такие случаи, когда все группы связаны в одну длинную, гибкую молекулу, свернувшуюся вокруг атома металла. Координированные группы сушественно изменяют химические свойства металла. Окраска таких соединений позволяет судить об их электронных энергетических уровнях. [c.205]

    Свойством, которое объединяет переходные металлы в отдельную группу, является существование незавершенной оболочки d-электропов. Влияние этих электронов на валентность, оптические и магнитные свойства переходных металлов. может быть рассмотрено на основе модифицированного варианта теории молекулярных орбиталей, известного пол названием теории поля лигандов. В этом подходе нет каких-либо новых принципов, но его главная особенность состоит в том. что внимание в основном обращается иа высокую симметрию окружения центрального иона металла. [c.544]

    Некоторые физические свойства переходных металлов (температуры плавления и кипения, а также твердость) обусловлены числом имеющихся в их атомах неспаренных -электронов. Эти свойства постепенно усиливаются, достигая максимума в группе Мп, а затем с юза уменьшаются с увеличением порядкового номера элементов. [c.450]

    После перерыва в заселении р-орбиталей у элементов четвертого и следующих периодов, связанного с включением в эти периоды переходных и внутренних переходных металлов, оно возобновляется (как у В и А1 во втором и третьем периодах) и продолжается до окончательного заполнения р-орбиталей. Щелочные и щелочноземельные металлы характеризуются плавным изменением свойств в пределах каждой группы. Свойства переходных металлов тоже плавно изменяются в пределах каждого ряда. Но начиная с группы 1ПА наблюдаются резкие изменения свойств элементов в каждой группе, хотя эти из.менения осуществляются закономерно во всей остальной части периодической системы. Здесь происходят резкие изменения свойств элементов от типично металлических к типично неметаллическим. Некоторые из подобных закономерностей показаны в табл. 10-5 и 10-6, [c.452]


    Свойства переходных металлов III—VII групп [c.280]

    У ионов и Са" 4у-орбиталь чуть более устойчива, чем З -орбита-ли, и поэтому присоединяемые к ним электроны поступают на 4х-орби-таль. В отличие от этого у иона 8с энергетический уровень З -орбитали располагается ниже уровня 4. -орбитали, и у ионов переходных металлов с более высокими порядковыми номерами дело обстоит таким же образом. Единственный внешний электрон у иона 8с" находится на З -орби-тали, а не на 4, -орбитали. Таким свойством обладают и все остальные переходные металлы. Перепутывание энергетических уровней 5- и -орби-талей происходит в начале каждого ряда переходных металлов. Хотя у элементов групп 1А и ПА сначала заполняется электронами внешняя орбиталь, у ионов переходных металлов электроны занимают -орбитали. Например, ион Т1" имеет валентную конфигурацию 3 ", а не 4 ". [c.438]

    Для выяснения влияния сорбированного водорода на каталитическую активность переходных металлов определенный интерес представляет исследование каталитических свойств переходных металлов IV — VII групп периодической системы. Водород с этими металлами образует устойчивые химические соединения — гидриды. [c.157]

    Магнитные свойства переходных металлов можно объяснить присутствием в не полностью заполненной -зоне неспаренных электронов. Кроме того, если следовать модели жестких зон, магнитные свойства сплавов металлов УП1— 1Б групп в общих чертах можно объяснить тем, что s-электроны элемента подгруппы Ш заполняют дырки в -зоне. При этом, очевидно, должна существовать критическая концентрация сплава, точно соответствующая концу заполнения. Однако из-за весьма приближенного характера модели жестких зон данный подход имеет серьезные недостатки так, например, в настоящее время установлено, что сплавы элементов УП1—1Б групп совсем не имеют общей -зоны. [c.14]

    Как следует из сказанного выше, величина расщепления кристаллическим полем определяет, спариваются ли -электроны в ионе металла или подчиняются правилу Хунда. Эта величина влияет и на многие другие свойства переходных металлов. Степень расщепления кристаллическим полем зависит от нескольких факторов. Особенно существенной является природа групп (лигандов), обусловливающих кристаллическое поле. В соответствии с электростатическими представлениями наибольшее расщепление будут вызывать лиганды с большим отрицательным зарядом и лиганды, способные близко подойти к иону металла (небольшие ионы). Небольшие высокозаряженные ионы при приближении к -орбите делают ее энергетически неблагоприятной для электрона. Это подтверждается [c.55]

    Понятие о функциональных группах является мощным методом классификации химических свойств, применяемым обычно в органической химии. В данном изложении интересно проследить групповые свойства переходных металлов, входящих в я-комплексы. Обычно влияние переходного металла на химические свойства связанных с ним органических групп зависит в некоторой степени от природы других лигандов и от самого металла. Тем не менее оказалось, что имеются некоторые общие групповые свойства , характерные для различных металлов, связанных с другими разнообразными лигандами. [c.268]

    Наиболее устойчивые элементы - благородные газы-располагаются в последовательном ряду элементов с возрастающими порядковыми номерами с интервалами 2, 8, 8, 18, 18 и 32. Зная эти интервалы и наиболее важные сходства в свойствах элементов, можно построить периодическую таблицу, в которой сходные элементы располагаются друг под другом в вертикальных колонках - группах, а химические свойства элементов закономерно изменяются вдоль горизонтальных рядов-периодов. Полную, длиннопериодную форму периодической таблицы можно Представить в компактной, свернутой форме, наглядно иллюстрирующей возможность разбиения всех элементов на три категории типические (непереходные) элементы, для которых характерно значительное изменение свойств внутри периодов переходные металлы, более сходные между собой по свойствам, и внутренние переходные металлы с чрезвычайно близкими свойствами. [c.323]

    Образование координационных связей часто считается свойством переходных металлов, однако этот тип связи никоим образом не ограничен этими элементами. Такие элементы главных групп, как бор, алюминий, кремний и олово, образуют много координационных соединений. Действительно, в гл. 8 обсуждалось образо- вание связей в простом координационном соединении ВРз- МНз, в котором ВРз является акцептором электронов (или кислотой по Льюису). [c.218]

    Кроме аммиака, катионы этих элементов образуют комплексы с пиридином СзНаМ, метиламином, этилендиамином, которые также можно использовать для их отделения. Катионы Мп + и Ре + (образующие с ними комплексы) не мешают, так как отделяются раньше в 5-й группе катионов по кислотно-щелочному методу. Полезно сопоставить сероводородный и кислотно-щелочной методы (см. табл. 36). В сероводородном методе анализа используется сходство свойств переходных металлов по горизонтальному направлению от скандия до цинка (их одинаковое отношение к сульфиду аммония). При осаждении 4-й группы используется способность ряда элементов образовывать сульфиды (тиооснования) и при растворении 5-й группы — способность ряда элементов образовывать тиоангидриды. В кислотнощелочном методе анализа для разделения тех же катионов используются в основном амфотерность гидроокисей и способность некоторых из них образовывать аммиачные комплексы. [c.191]


    Рассмотрим возможность выполнения условия (11) для тройных систем, составленных переходными металлами IV— V групп и углеродом. В результате большого сходства структурных свойств переходных металлов свободные энергии изоморфного превращения и гра и коэффициенты их испарения и приблизительно равны. Свободные энергии образования соединений Ме С и Ме"С — боль- [c.61]

    Изучение металлоферментов важно для дальнейшего проникновения в физику ферментативного катализа. Область белка, взаимодействующая с ионом металла в активном центре, представляет собой полидентатный лиганд, образуя несколько координационных связей с металлом. Это справедливо для кофакторов — ионов металлов, но не для простетической группы гема в НЬ и МЬ, в которой такая связь одна. Благодаря мягкости -электронной оболочки, ее большей деформируемости, чем з- и р-обо-лочки, она приобретает напряженное, энтатическое состояние в активном центре (Уильямс и Валли). Это проявляется в от личии электронных свойств переходных металлов в ферментах от этих свойств в модельных низкомолекулярных соединениях. Разнятся спектры ЭПР, спектры поглощения и т. д. [c.218]

    XI 1.1. СВОЙСТВА ПЕРЕХОДНЫХ МЕТАЛЛОВ III—VII ГРУПП [c.313]

    Например, для всех растений жизненно важное значение имеет зеленый координационный комплекс магния, известный под названием хлорофилла. Комбинация магния и координированных вокруг него групп придает хлорофиллу электронные свойства, которыми не обладает данный металл или его ион в частности, хлорофилл способен поглощать видимый свет и использовать его энергию для химического синтеза. Все организмы, которые дышат кислородом, нуждаются в цитохромах, координационных соединениях железа, которые играют важную роль в процессах расщепления и сгорания пищи, а также в накоплении высвобождающейся при этом энергии. Более сложные организмы нуждаются в гемоглобине-еще одном комплексе железа благодаря координированным к железу группам гемоглобин связывает молекулы кислорода, не окисляясь при этом. Многие области биохимии на самом деле представляют собой не что иное, как прикладную химию координационных соединений переходных металлов. В данной главе мы познакомимся со строением и свойствами некоторых координационных соединений. [c.205]

    Существует более компактная форма периодической таблицы, которая нагляднее показывает относительное изменение свойств соседних элементов (рис. 7-4). Закономерности изменения химических свойств могут быть легче поняты, если исследовать только типические элементы, рассматривая переходные металлы отдельно как особый случай и вообще оставляя в стороне вопрос о внутренних переходных металлах. В такой таблице вертикальные колонки называются группами и группы типических элементов нумеруются от 1А до УПА, а группа инертных (благородных) газов счи- [c.316]

    В последние годы большую актуальность приобрела проблема получения ультрадисперсных порошков (УДП) нитридов переходных металлов IV и V групп периодической системы (титана, циркония и др,). УДП имеют размеры частиц менее 1 мкм и обладают рядом особых физических свойств [9]. [c.176]

    Для ионов со степенью окисления + 2 и +3 оптимальным является координационное число 6 к таким комплексам относится множество соединений переходных металлов. Степень окисления + 1 оказывается слищком низкой, чтобы при построении комплексного иона обеспечить притяжение шести электронодонорных групп. Большинство комплексов, в которые входят ионы со степенью окисления Ч- 1, имеют меньшие координационные числа, например у Ag"" и u+ в комплексах А (ЫНз)2 + и U I2 координационное число 2. В некоторых случаях ионы со степенью окисления + 1 все же образуют устойчивые комплексы с довольно высокими координационными числами. Но в большинстве таких соединений, как, например, у комплексов Mn( N) и Mo( O)g, лиганды обладают особой способностью к я-связыванию, превосходящей обычные элек-тронодонорные свойства. [c.214]

    Б. В. Некрасов в своем капитальном труде [10], кроме этого, выделил из обширного класса гидридов переходных металлов группу так называемых переходных гидридов — гидридов металлов Illb и IVb групп, по свойствам своим являющихся промежуточными между солеобразными и металлическими гидридами. [c.160]

    Образование циклопентадиенильных производных — характерное свойство переходных металлов. Циклопентадиенильная группа встречается в соединениях переходных металлов почти так же часто, как карбонильная. Широкое изучение мёталлоорганических соединений переходных металлов началось с открытия бнс-циклопептадиенильных соединений этих металлов. Первым было синтезировано бмс-циклопентадиенилжелезо (С5Нв)2Ре, получившее затем общепринятое в настоящее время тривиальное название ферроцен . [c.167]

    Окраска является отличительным свойством координационных соединений переходных металлов. Октаэдрические комплексы кобальта могут иметь самую различную окраску в зависимости от того, какие группы координированы вокруг атома этого металла (табл. 20-2). Такие координирующиеся группы называются /шгандами. В растворах окраска обусловлена ассоциацией молекул растворителя, выступающих в роли лигандов, с металлом, а не свойствами самого катиона металла. В концентрированной серной кислоте (сильный обезвоживающий агент) ионы Си" бесцветны в воде они имеют аквамариновую окраску, а в жидком аммиаке — темную ультрамариновую. Комплексы металлов с высокими степенями окисления обладают яркой окраской, если они поглощают энергию в видимой части спектра СгО -ярко-желтой, а МПО4-ярко-пурпурной. [c.206]

    Если металлы переходной группы, например никель, имеющий 0,6 вакансии на атом в -уровне (по определению магнитным способом), сплавить с непереходным металлом, например с медью ( -электронные вакансии отсутствуют), электроны из меди перейдут в незаполненные -уровни никеля. Сплав сохраняет свойства переходного металла никеля до тех пор, пока -электронные вакансии не заполняются окончательно. Специальные тепловые и магнитные измерения на сплавах N1—Си показали, что энергетические -уровни заполняются примерно при содержании 60% (ат.), или 58% (по массе), а при более низких содержаниях меди остаются незаполненными. Поэтому можно ожидать, что эти сплавы при содержании ниже 60% (ат.) Си (>40% N1) пассивны и ведут себя подобно никелю. При более высоких содержаниях меди они, по-видимому, активны и поведение их более подобно поведению меди. Коррозионные и поляризационные исследования [28, 29], подтверждают что область составов, где проявляется пассивность, приблизительно соответствует пределам незаполненной -связи энергетических уровней, как показано на рис. 33—35. Скорость коррозии в 3%-ном растворе ЫаС1 при 80 °С имеет ми- [c.75]

    Ионно-координационные катализаторы используются для полимеризации а-олефинов, диенов и некоторых других мономеров (полярных и циклических). Общий принцип образования этих катализаторов состоит во взаимодействии соединения переходного металла с металлорганическим соединением, чаще всего алюминий-органическим, в углеводородной среде при невысокой температуре в присутствии или в отсутствие мономера. Соединения переходных металлов могут использоваться в виде растворов или суспензий, металлорганический компонент вводится в виде раствора. В результате образуются комплексы, содержащие связь переходный металл — углерод. Способность к образованию связей с углеродом является общим и характерным свойством переходных металлов d-группы, при этом возможно образование соединений как с а-, так и с л-связью металл — углерод. Это достигается путем алкилирования переходного металла металлорганическим соединением, конкретный механизм которого зависит от многих факторов. Последовательность соответствующих стадий показана на примере классической системы Циглера Ti lj — Al( 2Hg)3 на стр 190. [c.189]

    Леа Александрович Чугаев принадлежит к числу наиболее выдающихся советских химиков. Родился в Москве, а 1895 г, окончил Московский университет. В 1904 — 1908 г. — профессор Московского высшего технического училища, в 1908 —1922 г. — профессор неорганической химии Петербургского университета и одновременно (с 1909 г.) — профессор органической химии Петербургского технологического института. Занимался изуче нием химии комплексных соединений переходных металлов, в особенности метал- лов платиновой группы Открыл много новых комплексных соединений, важных в теоретической и практическом отношениях. Чугаев впервые обратил внимание иа особую устойчивость 5- и 6-члениых циклов во внутренней сфере комплексных соединеинй и охарактеризовал кислотно-основные свойства аммиакатов платины (IV). Он был одннм нз основоположников применения органических реагентов в аналитической химии. Много внимания уделял организации и развитию промышленности по добыче и переработке платины и платиновых металлов I СССР. Созда./ большую отечественную школу химикоз-неоргаников, работающих а области изучения химии комплексных соединений, [c.588]

    Этен-номенклатурное название С2Н4 его тривиальное название-этилен.) Соединения с циклическим расположением атомов, имеющие делокализованные, бензолоподобные кратные связи, называют ароматическими. Дакрон, нафталин, ДДТ, аденин и рибофлавин (см. рис. 21-1 и 21-3) содержат ароматические группы. На примере аденина и рибофлавина видно также, что углерод способен образовывать двойные связи с азотом и что азот может принимать участие в образовании ароматических циклов с делокализованными кратными связями. Многие разделы органической химии связаны с особыми свойствами систем, включающих ароматические циклы. Ароматические молекулы и комплексные соединения переходных металлов являются двумя важнейшими классами соединений, в которых энергия, необходимая для возбуждения электрона, приходится на видимую часть спектра. Поэтому практически все красители представляют собой такие соединения и принимают участие в механизмах захвата и переноса энергии фотонов. [c.270]

    Вместе с тем лишь немногие гидриды переходных металлов проявляют каталитическую активность при изомеризации олефинов. В работе [50] изучены каталитические свойства 17 гидридов, но только 5 из них проявили заметную каталитическую активность. Как и в случае карбонилов, гидриды приходится дополнительно активировать, повышая температуру. Большинство активных гидридов содержит легко отщепляемый лиганд. Например, НСоМгЬз и НКеСоЬз при незначительном повышении температуры теряют соответственно N2 и Ь и принадлежат поэтому к наиболее активным катализаторам изомеризации. Для понимания механизма изомеризации важно также, что разложение алкильных комплексов не сопровождается отрывом атома водорода от алкильной группы. [c.112]

    Исследовано влияние добавок соединений переходных металлов на пористые характеристики УВМ, активированных водяным паром и СО2. Наиболее существенные изменения в пористой структуре и химическом состоянии поверхности наблюдаются у активированных УВМ, полученных в присутствии V и Мо, при этом отмечается заметное развитие супермикропористой и мезопористой сфуктур, а также увеличение концентрации кислотных поверхностных групп. Повышенное содержание кислотных групп обусловливает проявление полученными УВМ катионообменньк свойств. Статическая обменная емкость по [c.119]


Смотреть страницы где упоминается термин Свойства переходных металлов III-—VII групп: [c.293]    [c.325]    [c.250]    [c.336]    [c.130]    [c.180]    [c.122]    [c.325]    [c.325]    [c.325]    [c.400]    [c.288]    [c.244]   
Смотреть главы в:

Курс общей химии -> Свойства переходных металлов III-—VII групп




ПОИСК





Смотрите так же термины и статьи:

Металлы переходные

Металлы свойства



© 2025 chem21.info Реклама на сайте