Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карбиды фазы внедрения

    Переходные металлы образуют карбиды — фазы внедрения, в которых атомы углерода занимают октаэдрические пустоты в плотной упаковке атомов металла. Обычно они представляют собой очень твердые проводящие электричество и очень тугоплавкие вещества (3000—4800°С). Металлы с малыми атомными радиусами (Сг, Мп, Ре, Со и №) образуют карбиды, по свойствам занимающие промежуточное положение между типичными ионными карбидами и карбидами — фазами внедрения. Эти карбиды гидролизуются водой или разбавленными кислотами. [c.308]


    Карбиды — фазы внедрения 426 Карбиламины — см. Изонитрилы Карбин 428 Карбоангидраза 428 Карбогидразы 429 Карбодиимиды 430, 890 Карбоиды 431 [c.532]

    К карбидам относятся соединения углерода с металлами и неметаллами. По характеру межатомных связей карбиды подразделяются на несколько групп. Для получения волокон представляют интерес карбиды с ковалентными межатомными связями и карбиды фазы внедрения. Кристаллические решетки последних построены из атомов металлов переходных групп, между которыми внедрены атомы углерода. Межатомные связи в карбидах фазы внедрения в известной мере подобны межатомным связям металлов. В образовании межатомных связей принимают участие электроны атомов углерода. К карбидам с ковалентными межатомными связями относятся карбиды кремния и бора, к карбидам фазы внедрения — Т1С, 2гС, УС, ЫЬС, ТаС, УС и др. Свойства некоторых карбидов приведены в табл. 7,5. Для карбидов наиболее характерны высокие температура плавления, термостойкость, твердость. Несмотря на большое содержание углерода (до 20 вес, °/о), им присущи некоторые свойства металлов — металлический блеск, электропроводность, положительный коэффициент линейного расширения, но в отличие от металлов их теплопроводность мало изменяется от температуры. Подобно металлам, карбиды способны к термоэмиссии, Карбиды обладают высокой хемостойкостью. Наиболее агрессивной по отношению к карбидам является смесь кислот НР и НЫОз (1 4). Однако неясно, происходит ли растворение карбидов в этой смеси или химическое взаимодействие с ней [55]. Пожалуй, наибольший интерес представляют высокие температуры плавления карбидов для карбидов Т1, ЫЬ, Zv, НГ эти температуры находятся [c.339]

    Карбиды — фазы внедрения (карбиды переходных металлов IV—VI групп периодической системы). [c.8]

    Бориды. Бор взаимодействует при высоких температурах (1300— 2000° С) в атмосфере аргона с большинством металлов (кроме щелочных, которые при этих температурах возгоняются), образуя бориды состава Ме В . В них сложным образом переплетаются металлическая и ковалентная связи. Один и тот же металл может образовать с бором ряд соединений. При относительном недостатке атомов бора они изолированы друг от друга, при избытке — образуют цепочки, сетки и каркасы. Бориды могут иметь строго определенный состав и быть фазами внедрения, подобно карбидам, нитридам и т. д. [c.174]

    Карбиды активных металлов характеризуются наличием полярной связи и разлагаются водой или кислотами. Помимо них, известны карбиды с типичной ковалентной связью, например, карбид кремния 31С и карбид бора В4С. У первого кристаллическая решетка алмазного типа, а у второго — сложная структура, состоящая из ромбоэдрической ячейки, содержащей 12 атомов бора, в виде каркаса, в пустотах которого расположены линейно 3 атома углерода. Оба карбида обладают твердостью, высокой температурой плавления и химической инертностью. Наконец, -элементы образуют карбиды, относящиеся к фазам внедрения в порах кристаллической решетки первых внедрены атомы углерода. Эти карбиды обладают жаропрочностью, тугоплавкостью, твердостью и относительной устойчивостью к кислотам. К таковым относятся карбиды титана, циркония, гафния, ванадия, ниобия, молибдена, вольфрама и др. [c.468]


    Ковалентные карбиды, к которым относят карбиды бора В4С и кремния Si , отличаются исключительно высокой твердостью и тугоплавкостью (у карбида вольфрама 7 пл = 3410°С). Химически оба карбида инертны. Карбид кремния имеет структуру типа алмаза, в структуре карбида бора атомы бора сгруппированы по 12 атомов и в пустотах между ними помещаются атомы углерода (ромбоэдрическая ячейка). Большинство карбидов металлов переходного типа образуют фазы внедрения. Атомы углерода могут [c.291]

    Фазы внедрения образуются и при взаимодействии титана, циркония и гафния с углеродом и азотом. Растворимость этих элементов в титане и его аналогах значительно меньше, чем водорода, хотя они также образуют твердые растворы внедрения. Поскольку атомные радиусы углерода и азота больше, чем водорода, предельный состав фаз внедрения в этом случае отвечает формуле ЭС и ЭЫ, т. е. заполняются только октаэдрические пустоты в ГЦК решетке. Эти фазы относятся к наиболее тугоплавким. Ниже приводим температуры плавления карбидов и нитридов в сопоставлении с температурами плавления металлов  [c.243]

    Число металлоподобных карбидов и нитридов для элементов VIB-группы значительно меньше, причем предельным составом для них является АВ. Это свидетельствует о невозможности образования углеродных и азотных кластеров в фазах внедрения. [c.348]

    Карбиды и нитриды их также или соединения переменного состава интерметаллического характера, или ограниченные твердые растворы внедрения. В таких фазах металлические атомы образуют плотно упакованную решетку (или К-8), а атомы неметалла размещаются в различных пустотах решетки металла. Для примера в табл. 35 приведен состав некоторых таких гомогенных фаз внедрения, образуемых металлами переходных подгрупп с водородом, азотом и углеродом 156, стр. 23 . [c.324]

    Силициды. Атом кремния имеет сравнительно большой радиус (1,17 А) и большинство силицидов, строго говоря, нельзя относить к соединениям внедрения — они занимают промежуточное положение между соединениями внедрения и интерметаллическими соединениями. При образовании твердых растворов с переходными элементами IV группы атомы кремния могут входить в решетку и по принципу внедрения, и по принципу замещения. Кремний — электронный гомолог углерода, поэтому единственный фактор, мешающий образованию фаз внедрения,— размерный. В низших силицидах сохраняется преимущественно металлический характер связи, а структура их сходна со структурой металлов. В высших силицидах наблюдается тенденция к преобладанию ковалентной связи и образованию сложных структур. Силициды обнаруживают сходство с карбидами, с другой стороны, они во многом родственны боридам. [c.235]

    Пассивирование сплава можно объяснить адсорбцией на его поверхности гидроокиси кобальта. Занимая активные участки поверхности кобальтовой связки, она вызывает резкое падение скорости растворения сплава в целом, поскольку растворение фазы внедрения — карбида вольфрама также тормозится при пассивировании связки. Одновременно в результате адсорбции на поверхности сплава ионов гидроксила образуется катализатор, ускоряющий дальнейшую реакцию растворения кобальта. Повышение скорости ионизации кобальтовой связки устраняет и связанные с ней ограничения в растворении карбида вольфрама, что также приводит к некоторому повышению плотности тока. При этом выделяется кислород. Совокупность этих факторов служит причиной образования наряду с ионизацией кобальта нерастворимого окисла трехвалентного, а возможно и четырехвалентного кобальта. Поэтому с ростом скорости процесса отвод продуктов реакции затрудняется. По мере сдвига потенциала в положительную сторону процесс ионизации сплава начинает конкурировать с образованием на его поверхности пленки, состоящей из продуктов растворения. В некоторый момент эти скорости должны сравняться, затем вторая начинает превалировать. Это в конечном итоге вызывает появление видимой фазовой пленки на поверхности сплава (вторая стадия пассивации). Качественный анализ образующейся при этом пленки показал присутствие в ней кобальта. [c.535]

    Сплав ВК8 отличается еще более положительными значениями потенциалов, чем чистый карбид вольфрама. Причина этого заключается в том, что сплав состоит из двух фаз кобальтовой связки, представляющей собой твердый раствор 4—6% вольфрама в кобальте, и распределенных в ней зерен фазы внедрения —карбида вольфрама. Кобальтовая связка, вследствие содержания в ней карбида вольфрама по указанной выше причине должна растворяться с большими затруднениями, чем чистый кобальт, т. е. должна иметь более положительный потенциал растворения. В то же время и поведение фазы внедрения также изменится по сравнению с поведением чистого карбида вольфрама. [c.536]

    В химическом отношении многие фазы внедрения (особенно некоторые карбиды и нитриды) представляют собой инертные материалы, безразличные к действию сильных минеральных кислот, что открывает возможности их использования для изготовления деталей химической аппаратуры. Помимо этого, обработка поверхности металлов, позволяющая создать на ней карбидный, боридный или нитридный слой, не только улучшает механические свойства, но и повышает коррозионную стойкость. Фазы внедрения обладают высокой твердостью, тугоплавкостью и жаропрочностью, а потому являются прекрасными конструкционными материалами в современной технике. [c.219]


    По типу внедрения бор образует твердые растворы с титаном, цирконием и гафнием. Бориды состава Э2В и ЭВ являю ч металлоподобными фазами внедрения, твердыми и тугоплавкими, хотя и уси лают в этом отношении карбидам и нитридам. [c.396]

    В Т. с. карбиды и нитриды переходных металлов IV-VI гр. представляют собой, как правило, фазы внедрения, для к-рых отношение атомных радиусов неметаллов (X) и металлов (М) меньше (или равно) 0,59. Стабильные карбиды и нитриды состава МХ, образующие твердые фазы в Т. с., характеризуются высокими т-рами плавления и твердостью (см. Карбиды, Нитриды), обладают ограниченной р-римостью в металлах триады Fe (табл. 2) последняя определяется размерами атомов металла, хим. сродством компонентов и их кристаллич. структурой. [c.509]

    Больнюй интерес представляют многочисленные карбиды непереходных и переходных элементов. Так, В С и Si чрезвычайно тверды, мало уступают но твердости ал.мазу, Si имеет алмазоподобную решетку. Карбиды -элементов образуют твердые, тугоплавкие соединения (Ti , Zr , Н[С и др.), имеют высокую проводимость, большинство из них относится к фазам внедрения (см. рис. 5.20). [c.289]

    Карбиды. Карбиды, т. е. соединения металлов с углеродом, делят на несколько классов карбиды, которые представляют собой результат замещения водорода на металл в метане (например AI4 3), карбиды, являющиеся металлическими производными ацетилена (ацетилениды, например карбиды кальция, магния, щелочных металлов, металлов группы меди, цинка и др.), ковалентные карбиды (карбиды кремния и бора) и карбиды, представляющие собой фазы внедрения углеродных атомов в решетку металла. [c.291]

    Фазы внедрения образуют обычно плотнейшие упаковки, гексагональную (ГПУ) и кубическую (ГЦК), для которых реализуются большие координационные числа. Такие структуры характерны для металлоподобных фаз. Состав фаз внедрения определяется не взаимным сродством компонентов, а геометрическими соображениями. В плотнейших упаковках существует два типа пустот тетраэдрические, окруженные четырьмя атомами, и октаэдрические — шестью. Количество октаэдрических пустот на одну элементарную ячейку равно количеству атомов в этой ячейке, а количество тетраэдрических пустот в два раза больше, т. е. на один атом плотнейшей упаковки приходится одна октаэдрическая и две тетраэдрические пустоты. Если внедряемые атомы занимают октаэдрические пустоты, то ожидаемый состав фазы внедрения будет отвечать формуле АВ, если же занимаются тетраэдрические пустоты — АВг (А — металл, В — неметалл) . Поскольку размер тетраэдрических пустот меньше, то фазы типа АВа могут образовываться только при внедрении малых атомов водорода. Действительно, существуют гидриды TIH2, 2гНг и т. д. Для карбидов, нитридов и боридов более ха))актерны фазы внедрения состава АВ (Ti , TaN, HfN, ZrB и т. п.), что указывает на внедрение атомов неметалла в октаэдрические пустоты .  [c.384]

    Карбиды переходных металлов, в которых, на первый взгляд, соблюдается правило формальной валетности (Ti , Hf и т. п.), относятся в действительности к фазам внедрения типа а [c.77]

    По типу внедрения образуют твердые растворы с титаном, цирконием и гафнием также кислород и бор. Так, кислород в a-Ti растворяется вплоть до 34 ат. долей, % при 925 °С, до 40 ат. долей, % в a-Zr и до 20 ат. долей, % в a-Hf, по типичных фаз внедрения обычно ие образует в силу высокой электроотрицательности. Однако существующие низшие оксиды титана Ti O и TiaO с металлидными свойствами можно формально рассматривать как фазы внедрения с частично заполненными октаэдрическими пустотами. Бориды состава ЭаВ и ЭВ являются металлоподобиыми фазами внедрения, твердыми и тугоплавкими, хотя и уступают в этом отношении карбидам и нитридам. Известны, кроме того, фазы состава ЭВг для всех элементов подгруппы титана. Однако их принадлежность к фазам внедрения сомнительна, поскольку атомный радиус бора не позволяет его атомам размещаться в небольших тетраэдрических пустотах. [c.244]

    Соединения металлов триады железа с остальными неметаллами (пниктогены, углерод, кремний, бор) заметно отличаются от рассмотренных выше. Все они не подчиняются правилам формальной валентности и в большинстве своем обладают металлическими свойствами. Поэтому их можно рассматривать как своеобразный переходный класс соединений к объектам металлохимии. К фазам внедрения, по-видимому, относятся лишь некоторые карбиды, бориды, а также гидриды. Для всех элементов характерны карбииы Э3С, а для железа и кобальта, кроме того, и Э С. Такой же состав известен и для боридов. Остальные соедннения обладают более сложной структурой и природой. [c.407]

    К числу фаз, возникновение которых определяется соотношением атомных размеров компонентов, относятся и так называемые фазы внедрения. Как и твердые растворы внедрения (см. гл. IX, 87), они образуются при взаимодействии металлов и легких неметаллов (бор, углерод, азот, кислород, водород) . Образогание ме-таллидных фаз внедрения (карбидов, нитридов и т. п.) характерно только для переходных металлов с дефектными d- и f-оболочками. При низких концентрациях неметалла наблюдается простое раство- [c.382]

    Фазы внедрения находят в современной технике обширное применение благодаря их уникальным свойствам. Они обладают исключительно высокой тугоплавкостью (т.пл. Т1Н = 3200°С, т.пл. НГС = 3890°С, т.пл. ТаС = 3800°С) и жаропрочностью, а потому являются прекрасными конструкционными материалами, например в ракетной технике. Высокая твердость фаз внедрения позволяет использовать эти материалы в качестве абразивов, для изготовления быстрорежущего инструмента (сплавы типа победит ). Так, карбид вольфрама УСо,5 имеет твердость порядка 1500— 1700 кг/мм , а карбид титана Т1С — 2850—3000 кг/мм . Гидриды переходных металлов используются в качестве восстановителей, катализаторов, для создания покрытий из соответствующих металлов и получения металлов в порошкообразном состоянии (хрупкие гидриды легко растираются в порошок, а затем ари нагревании в вакууме разлагаются). Т1Н, Т1Нг, 2гНг, УНг и другие применяются в ядерной технике в качестве замедлителей нейтронов. Ряд фаз внедрения используется в качестве сверхпроводников (ЫЬС, Т1Н, МоС, NbN, А С), электродов, работающих при повышенных температурах, катализаторов (МоС5,о, УС, РеСо,5). [c.385]

    В химическом отношении многие фазы внедрения (особенно не которые карбиды и нитриды) представляют собой инертные материалы, безразличные к действию сильных минеральных кислот, что открывает возможности их использования для изготовления деталей химической аппаратуры. Помимо этого, обработка поверхности металлов, позволяющая создать на ней карбидный, боридный или нитридный слой, не только улучшает механические свойства, но и повышает коррозионную стойкость. В определенном смысле фазы внедрения представляют собой новый этап в химической организации вещества. Их образование контролируется не только соотношением размеров атомов, но и фактором более высокого порядка— электронной концентрацией. Это приводит к еще большему качественному своеобразию продуктов взаимодействия по сравнению с исходными компонепг-.  [c.385]

    Бориды переходных металлов являются фазами промежуточного характера между интерметаллическими соединениями и фазами внедрения (типичный пример фаз внедрения — карбиды). Бориды, как и многие силициды переходных металлов, имеют разнообразную п сложную структуру, что связано со способностью атомов бора (соответственно кремния) образовывать между собой валентные связи. Силициды тугоплавких металлов в отличие от карбидов, нитридов и многих боридов ие являются фaзa uI внедрения (из-за большей величины атомов кремния). [c.325]

    Сложные фазы внедрения. Число трех- и многокомпонентных систем переходных металлов и неметаллов очень велико. Тройные систем могут быть образованы металлом и двумя неметаллами либо двумя металлами и одним неметаллом. Для тройных систем титана, циркония и гафния с неметаллами характерны непрерывные и ограниченные твердые растворы сложные соединения, как правило, не образуются. О взаимодействии в них можно судить по соответствующим квазибинарным системам Ti — Zr , TiN — ZrN, Ti — TiN и т. д. Возможность образования непрерывных твердых растворов в системах определяется рядом факторов. Для изоструктурных карбидов и нитридов вследствие близости размеров атомов углерода и азота решающее значение имеет соотношение радиусов атомов металлов. Поэтому карбиды и нитриды титана, циркония и гафния обладают полной взаимной растворимостью. Непрерывные твердые растворы образуются также с карбидами и нитридами металлов других групп периодической системы. В этом отношении они достаточно точно следуют правилу 15% Юм Розери, сформулированному первоначально только для металлов. В случае карбидов и нитридов автоматически выполняется условие совпадения типа связи. Полная растворимость наблюдается и в других системах, например TiBj —2гВг. Техническое значение таких фаз огромно, так как возможность регулирования состава позволяет получать материалы с широкой гаммой свойств. [c.237]

    Характерной особенностью элементов подгруппы титана является образование твердых растворов и фаз внедрения с легкими неметаллами (Н, В, С, N1 О). Это обстоятельство накладывает заметный отпечаток на металлохимию этих элементов. Титан и его аналоги обладают способностью сильно поглощать водород. Фазам внедрения отвечают номинальные составы ЭН и ЭН2(Т1Н2, 2гН и 2гН2, НШ и НШг)- Для этих фаз характерна ГЦК-решетка. Фазы внедрения образуются и при взаимодействии титана, циркония и гафния с тлеродом и азотом. Растворимость этих элементов в титане и его аналогах значительно меньше, чем водорода, хотя они также образуют твердые растворы внедрения. Поскольку атомные радиусы углерода и азота больше, чем водорода, предельный состав фаз внедрения в этом случае отвечает формуле ЭС и ЭК, т.е. заполняются только октаэдрические пустоты в ГЦК-решетке. Эти фазы относятся к наиболее тугоплавким. Ниже приведены температуры плавления карбидов и нитридов металлов подгруппы титана  [c.396]

    Все перечисленные свойства и термодинамические характеристики (АН, АО и 5) зависят от состава фаз, поэтому при их описании надо точно указывать результаты химического и фазового анализа. Бориды переходных металлов являются фазами промежуточного характера между интерметаллическимн соединениями и фазами, внедрения (типичный пример фаз внедрения — карбиды).. Бориды, как и многие силициды переходных металлов,, имеют разнообразную и сложную структуру, что связано со способностью атомов бора (соответственно кремния) образовывать между собой валентные связи. Сплициды тугоплавких металлов в отличие от карбидов, нитридов-н многих боридов не являются фазами внедрения (из-за большей величины атомов кремния). [c.403]

    Для рассматриваемых систем общим является наличие в ограничивающих системах (Мо, W) — С высокотемпературных кубических карбидов с решеткой типа Na l, претерпевающих при охлаждении быстропротекающие превращения, которые удается предотвратить только при экстремальных условиях закалки [17]. Добавки третьего компонента по-разному влияют на устойчивость этих высокотемпературных фаз. Оказалось, что интенсивность стабилизирующего действия на них легирующих добавок определяется темпом снижения числа валентных электронов на формальную единицу (ВЭК) при замещении молибдена и вольфрама легирующим металлом и возрастает в ряду W, V, Nb, Та, Т1, Zr, Hf. Этот результат является закономерным. На основании результатов рентгеноспектральных исследований, расчета полосовой структуры и анализа физико-химических свойств фаз внедрения со структурой типа Na l (в том числе для карбидов переходных металлов III—V групп периодической системы элементов) был сделан вывод [6, 8, 113, [c.164]

    В плане развития работ в этом направлении на кафедре были рассмотрены вопросы электронной природы твердости металлов, неметаллов и сплавов (Л. И. Баженова, А А. Иванько) и обобщены в монографическом справочнике электронного строения сложных карбидо-гидридных фаз (Л. Н. Баженова, канд. техн. наук В. В. Морозов) — эта работа привела к выводам о двойственном состоянии водорода в гидридах и карбидо-гидридах как в форме протонов, так и отрицательных гидрид-ионов, позволила объяснить причины более сильной связи водорода в карбидо-гидридах по сравнению с гидридами, представить схему химических связей в этих соединениях, а также существенно развить представление о структуре фаз внедрения вообще. Развитие представлений конфигурационной модели применительно к ферритам с использованием редкоземельных элементов было выполнено [c.78]

    При взаимод. Т1, 8с, Ш, 2г с переходными элементами VIII гр.-№, Со, Рс1, КЬ, Р1-возникают фазы АзВ, близкие по структуре к т. наз. карбиду быстрорежущей стали РезШзС (кубич структура, 96 атомов в ячейке) геом. фактор Гд/Гв 1,20 (к. ч. = 12), однако на образование этих фаз оказывает ограничивающее действие и фактор электронной концентрации, чем объясняется отсутствие двойных фаз с участием Ре. С этим же фактором, вероятно, надо связывать появление таких фаз в ряде систем при наличии кислорода, азота или углерода, к-рые выступают как стабилизаторы (подобно фазам внедрения). [c.247]

    Фазы состава М4.Х обычно имеют кубич. гранецентрир. подрешетку металлич. атомов, MjX-reK aroH. компактную, МХ-кубическую (гранецентрир. или объемноцентрир.) или простую гексагональную. Т, к. в плотнейших гексагон. и кубич. упаковках число октаэдрич. пустот равно числу металлич. атомов, а число тетраэдрических - вдвое больше, при размещении атомов неметаллов в октаэдрич. пустотах предельный состав отвечает ф-ле МХ, в тетраэдрических-MXj. К фазам внедрения относятся в осн. гидриды, карбиды, нитриды, частично оксиды, фосфиды и бориды переходных металлов. [c.42]


Смотреть страницы где упоминается термин Карбиды фазы внедрения: [c.493]    [c.256]    [c.77]    [c.310]    [c.436]    [c.440]    [c.231]    [c.301]    [c.218]    [c.219]    [c.278]    [c.432]    [c.507]    [c.165]    [c.157]    [c.58]   
Краткая химическая энциклопедия Том 2 (1963) -- [ c.426 ]




ПОИСК





Смотрите так же термины и статьи:

Фазы внедрения



© 2024 chem21.info Реклама на сайте