Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Транспортирующие системы в растениях

    Образовавшаяся молекула фитогормона транспортируется по растению от места своего синтеза к клеткам-мишеням, т. е. клеткам, чувствительным к данному фитогормону. Транспорт фитогормонов происходит по проводящей системе растения, с током пасоки и ассимилятов, а также по межклеточному пространству. [c.333]

    Ti-плазмида, включившись в хромосомную ДНК обычным способом, перенесет и свою Т-ДНК, которая теперь не несет генов корончатого галла. Следующим логическим шагом в развитии этой системы стало клонирование чужеродного маркерного гена и гена, интересующего исследователя, в Т-ДНК, чтобы их можно было транспортировать в хромосомную ДНК растения-хозяина. Векторная система на основе Ti-плазмид нашла широкое применение во всем мире. Ее используют для создания трансгенных растений в тысячах лабораторий. [c.383]


    АБК образуется в листьях, стеблях, плодах и семенах. Тот факт, что изолированные хлоропласты сохраняют способность к ее синтезу, наводит на мысль о метаболической связи этого вещества с образующимися также в хлоропластах каротиноидными пигментами. Как и другие фитогормоны, АБК транспортируется по проводящей системе растения, главным образом по флоэме. Кроме того, из корневого чехлика она распространяется путем диффузии (см. раздел о геотропизме). [c.267]

    В специальной литературе неоднократно отмечалось, что в клеточных стенках некоторых растительных тканей содержатся резервные гемицеллюлозы, которые в случае необходимости могут быть мобилизованы растением для использования в других его частях. При этом предполагается, что резервные гемицеллюлозы в случае необходимости под действием системы ферментов растворяются, превращаясь в сахарозу, и транспортируются в таком виде по проводящей системе к местам потребления. [c.424]

    У взрослых растений синтез цитокининов происходит главным образом в корневой системе, откуда они по ксилеме транспортируются в надземную часть растения. Чем ниже на стебле расположены боковые почки, тем дальше они от источника ауксина, находящегося в апексе стебля, и тем ближе к источнику цитокининов в корнях. Так как апекс растения, проявляющего апикальное доминирование, в процессе роста удаляется от боковых почек,, последние начинают распускаться в результате того. [c.297]

    Можно было бы предполагать, что конструктивные принципы , использованные в животных системах, транспортирующих сравнительно большие количества СО2 по направлению к внешней среде, действуют (хотя и в обратном направлении) и у растений, перед которыми стоит задача накопления СО2 из среды, бедной СО2. Действительно, имеются убедительные данные о связи между активностью карбоангидразы и осуществлением фотосинтеза. [c.95]

    Для хорошего перемещения в растении высокий коэффициент распределения вода — масло более важен, чем абсолютная растворимость соединения. Большая часть системных инсектицидов эффективна при концентрациях, равных нескольким миллиграммам в одном литре растительного сока. Если же их растворимость в. масле значительно лучше, чем в воде, то они будут задерживаться в липидах мембран и органелл и откладываться в тканях растений. Медленно движущийся поток воды в проводящей системе был бы не в состоянии эффективно транспортировать такие препараты. Это напоминает поведение соединения в хроматографической колонке оно хорошо перемещается с элюирующей фазой, только если растворимо в ней. [c.55]


    Передвижение веществ по растению на дальние расстояния осуществляется по проводящим пучкам. По сосудам и трахеидам ксилемы вещества с водным током транспортируются от корней к верхушкам побегов. Движущие силы ксилемного транспорта — корневое давление и транспирация. Отток ассимилятов из листьев и из запасающих органов идет по ситовидным трубкам флоэмы. Загрузка как ксилемных (в корнях), так и флоэмных окончаний (в листьях) происходит благодаря деятельности активных мембранных насосов (Н -помп), которые функционируют в плазмалемме живых клеток, окружающих сосуды и ситовидные трубки. Вслед за поступлением осмотически активных веществ в сосуды и ситовидные трубки по осмотическим законам входит вода, и дальнейшее передвижение веществ по сосудистой системе осуществляется в результате возрастающего гидростатического давления. [c.300]

Рис. 20-25. Две главные проводящие системы - ксилема и флоэма, с их помощью вода и растворенные в ней вещества транспортируются по всему растению. Это сильно упрощенная схема, в частности на ней не отражен интенсивный водный обмен, происходящий между ксилемой и флоэмой Рис. 20-25. Две главные проводящие системы - ксилема и флоэма, с их <a href="/info/412926">помощью вода</a> и растворенные в ней <a href="/info/1609350">вещества транспортируются</a> по всему растению. Это сильно <a href="/info/1472997">упрощенная схема</a>, в частности на ней не <a href="/info/308118">отражен интенсивный</a> <a href="/info/614202">водный обмен</a>, происходящий между ксилемой и флоэмой
    В клетках бактерий, у которых еще отсутствует вакуолярная система, а также микобактерий, у которых существуют лишь отдельные цитоплазматические мембраны, рибосомы представляют собой непременные компоненты цитоплазмы. В дрожжевых клетках, как и в клетках меристемы высших растений, большинство рибосом свободно расположено в гиалоплазме. В растительных клетках образование рибосом предшествует возникновению мембран. Связь рибосом с мембранами эндоплазматической сети имеет большое значение в процессе синтеза белков, поскольку в этом случае рибосомы более активны, а белки сразу транспортируются по системе ретикулума туда, где они необходимы. [c.42]

    У растений имеется своеобразная циркуляторная система, в которой жидкость транспортируется вверх от корней по ксилеме и вниз от листьев по флоеме. Таким путем происходит перенос между клеткайй большого количества различных веществ. В то же время существует активный транспорт веществ через клеточные мембраны и против fpa-диента концентрации. Ряд соединений, транспортируемых от клетки к клетке по одному из этих двух способов, можно классифицировать как гормоны, причем с течением времени их обнаруживается все больше. Сейчас известно пять соединений или групп соединений, относящиеся к категории гормонов растения. Это ауксины (гл. 14, разд. И), гибберел-лины (гл. 5, разд. Д гл. 12, разд. 3,1), цитокинины (гл. 15, разд. Б,4), абсцизовая кислота (рис. 12-13) и этилен (гл. 14, разд. Г, 4). [c.323]

    Однако в процессе эволюции у растений, как и у животных, между различными органами развиваются коммуникации, позволяющие целенаправленнее и быстрее передавать как трофические факторы, так и сигналы (канализация сигнала). Такие коммуникации у высших растений представлены проводящими сосудистыми пучками, по которым транспортируются питательные вещества и фитогормоны. Проводящие пучки способны также передавать электрические импульсы. Система канализированной связи наряду с полярностью обеспечивает пространственную организацию растительного организма. Причем не только полярность, но и канализированные связи находятся под контролем доминирующих центров. [c.52]

    Высшие растения имеют две протяженные транспортирующие системы. Одна из них—ксилемная — состоит из непрерывных трубок, образованных мертвыми клетками, по которым вода и растворенные в ней минеральные питательные вещества транспортируются из корней в листья. Вторая система — флоэмпая более сложна и менее изучена в ней с очень небольшой скоростью (не более нескольких сантиметров в час) из взрослых листьев в молодые растущие ткани транспортируются продукты фотосинтеза. По флоэме перемещается концентрированный до 16% раствор универсального энергетического продукта метаболизма растений — сахарозы, а также аминокислоты и белки в значительно меньших концентрациях. Транспорт внутри растений на большие расстояния осуществляется только по этим двум системам и только водорастворимых веществ. [c.54]

    Стимуляция роста микробного сообщества происходит за счет продуктов жизнедеятельности корневой системы растения корневых депозитов, ризодепозитов). Это понятие включает корневые экссудаты (выделения) — низкомолекулярные органические вещества (сахара, спирты, органические и аминокислоты, витамины, гормоны и т.д.), а также высокомолекулярные метаболиты (полисахаридные и белковые слизи, ферменты) и утраченные части растения (слущивающиеся клетки, отмершие участки корня, корневой чехлик и т.д.). Подсчитано, что более 40% углерода, зафиксированного в процессе фотосинтеза, теряется в виде корневых депозитов. Наиболее интенсивная утечка таких веществ происходит в зоне растяжения корня при его росте. С другой стороны, в присутствии потенциального патогена некоторые растения образуют фитоалексины, обладающие специфической антимикробной активностью. Растение также способствует изменению физико-химических условий среды обитания микроорганизмов, оказывая механическое воздействие на почву, выводя через свою сосудистую систему ряд газов (например, метан на рисовых чеках) и транспортируя кислород в анаэробные участки почвы вокруг корня. Ризосферные микроорганизмы, развиваясь на корневых депозитах растения, в процессе метаболизма и после отмирания микробных клеток образуют питательные вещества в формах, доступных для использования растениями. [c.277]


    Какие классы молекул и ионов транспортируются через мембраны Из окружающей среды в клетку поступают неорганические ионы, причем в результате перено са иногда они сильно концентрируются (гл. 2, разд. Е.2). Например, корни зеленых растений могут экстрагировать необходимые вещества из очень разбавленных растворов. Аналогичной способностью наделены микроорганизмы, например дрожжи и бактерии, у которых обнаружены системы, способные избирательно концентрировать многие ионы, в том числе К+, Са +, сульфаты и фосфаты. Кожа лягушки в состоянии поглощать ионы Na+ из среды с концентрацией Na l, равной 10 М, и переносить их во внутреннюю среду, где концентрация Na l превышает 0,1 М. Клетки слизистой оболочки желудка могут концентрировать ионы водорода в желудочном соке примерно до 0,16 М. [c.359]

    Сахароза, или тростниковый сахар,— дисахарид, состоящий йз глюкозы и фруктозы. Сахарозу синтезируют многие растения, у высщих же животных она отсутствует. В отличие от мальтозы и лактозы у сахарозы нет свободного аномерного атома углерода, поскольку оба аномерньгх атома моносахаридных остатков- связаны друг с другом (рис. 11-12) поэтому сахароза не является восстанавливающим сахаром. В биохимии растений этот дисахарид-своего рода загадка. Дело в том, что если D-глюкоза служит основным строительным блоком как крахмала, так и целлюлозы, то сахароза-основной промежуточный продукт фотосинтеза. У многих растений именно в форме сахарозы транспортируются по сосудистой системе сахара из листьев к другим частям растения. Преимущество сахарозы перед глюкозой как транспортной формы сахаров заключается, вероятно, в том, что ее аномерные атомы углерода связаны друг с другом это предохраняет сахарозу от атаки окислительных или гидролитических ферментов в процессе ее переноса из одной части растений в другую. [c.310]

    При уплотнении и переувлажнении почвы воздух вытесняется из почвенной среды и возникают аноксичные условия. Большинство растений не способно транспортировать кислород и углекислый газ между своими органами, поэтому в условиях аноксии они не могут нормально развиваться, поскольку корни, так же как и надземные части растений в темновой стадии фотосинтеза, должны поглощать кислород. Следовательно, необходима аэрация почвенной среды. Обильная корневая система способствует разрыхлению почвы и облегчает газообмен между различными горизонтами почвенного покрова. [c.148]

    У животных и человека подобная циркуляция л-сидкостей осуществляется с участием кровеносной и лимфатической систем и подчинена эндогенной регуляции [8], в чем, кал<ется, никто не сомневается. Когда л<е речь заходит о растениях, по-лолсение почему-то коренным образом меняется. И хотя у растений тоже имеются специализированные проводящие системы, предназначенные для передвижения воды и водных растворов— ксилема и флозма, которые меледу собой струк,турно и функционально взаимосвязаны [9] и отдаленно дал<е напоминают систему кровообращения у животных, до сих пор транспорт воды в растении (прел<де всего восходящий водный ток) сплошь и рядом рассматривают чуть ли ни как простое физическое явление, обусловленное и регулируемое главным образом действием внешних факторов. Полагают, что весь восходящий водный ток возникает лишь благодаря условиям существования наземных растений, вынужденных непрерывно отдавать воду в окружающую атмосферу, а для восполнения своего водного запаса поглощать воду из почвы. Механизм л<е транспорта воды сводится при этом к простой ультрафильтрации и массовому току под давлением, создаваемым градиентом водного потенциала в системе почва—растение—атмосфера. Исходя из такой точки зрения (нашедшей отражение в ряде учебников и обзоров [10—13]), наземное растение выполняет всего-навсего роль канала между почвой и атмосферой, по которому вода двил<ется в силу того, что между почвой и атмосферой постоянно существует градиент водного потенциала. Живые л<е клетки, для функционирования которых, собственно говоря, и транспортируется вода, не только не способствуют водному току, но. напротив, лишь оказывают ему сопротивление поэтому водный ток направляется в основном в обход живых клеток, по апо-пласту. Договариваются даже до аналогии между восходящим водным током в растении и двил<ением воды по полоске фильт- [c.7]


Смотреть страницы где упоминается термин Транспортирующие системы в растениях: [c.542]    [c.306]    [c.156]    [c.379]    [c.97]    [c.180]    [c.83]    [c.160]   
Смотреть главы в:

Пестициды и защита растений -> Транспортирующие системы в растениях




ПОИСК







© 2024 chem21.info Реклама на сайте