Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение алюминия в никеле и никелевых сплавах

    Определение алюминия в никеле и никелевых сплавах [c.218]

    При затруднениях в определении скорости коррозии рекомендуется пользоваться распределением металлов по группам, в пределах которых контакт может считаться допустимым. Для атмосферных условий эксплуатации можно выделить пять таких групп I — магний П — алюминий, цинк, кадмий П1 — железо, углеродистые стали, свинец, олово IV — никель, хром, коррозионностойкие стали (в пассивном состоянии) типа Х17 и 18—8 V — медно-никелевые и медноцинковые сплавы, медь, серебро, золото. [c.74]


    Прецизионные сплавы изготовляют в основном на железной, никелевой и кобальтовой основах. Легирование железа, никеля и кобальта отдельно или небольшими добавками хрома, молибдена, вольфрама, ванадия, меди, алюминия и других металлов осуществляют для получения определенных физических и физико-механических свойств прецизионных сплавов. В то же время нельзя не отметить, что дополнительное легирование различно будет влиять на их коррозионную стойкость. [c.160]

    Прямое определение Sb в сочетании с рядом других элементов производится в самых разнообразных материалах, в том числе в алюминии [54, 55, 1134, бериллии и его соединениях [305, 1297], боре [778, 11171 и фосфиде бора [26], ванадии и его окислах [234, 491, 1117], висмуте [809, 909, 1134], вольфраме и его соединениях [195, 739, 795, 1265], вольфрамовых рудах [1480], германии и его соединениях [559, 634, 905], горных породах [386, 730, 1182, 1240, 1336, 1443, 1599], графите и углероде [235, 397, 612], жаропрочных и тугоплавких сплавах [176, 177, 379, 1278, 1593], железе [425, 1134, 14411, железных рудах и минералах [198, 386, 636, 971, 1336], сталях [176, 546, 1278, 1441, 1593] и чугуне [61, 274, 546, 1250], золоте [404, 754, 909, 1095] и его сплавах [196, 389,390, 1167], индии [1168, 1308] и сплавах на его основе [814, 815, 1267], иттрии и его окислах [234, 272], алюмоиттриевом гранате [82], кадмии [598, 599, 1134] и кадмиевых сплавах [819], кобальте [60, 153, 1134], кремнии [252, 1619], кварце [154], карбиде кремния 109, 110, 288, 789, 790, 1353], кремниево-медных сплавах 594], силикатах [1586], технических стеклах [612, 1579], меди 129, 482, 964, 997, 1176, 1599, 1609, 1645, 1654], медных сплавах 96, 482, 1048, 1188, 1457,1463, 1566], окиси меди [199], продуктах медеплавильного производства [3601 и медных электролитах [1298, 1600], молибдене и его соединениях [104, 237, 308, 795, 1325, 1347, 1443], мышьяке [472, 1134], никеле и никелевых сплавах [486], ниобии и его окислах [49, 972], олове [582, 744, 782, 812, 900, 1684] и его сплавах [1210, 1494, 1495], полупроводниковых материалах [668, 678, 806, 1298, 16841, припоях [210, 1101], свинце [481, 534, 908, 1154, 1155,1193, 1543,1655], свинцовых сплавах [126, 871], рудах [53, 667, 806, 1143] и пылях [811], РЗЭ и их окислах [234, 353], селене [154, 155, 499, 747, 818, 1134], селениде ртути [715], сере [189, 1134], серебре [388, 390, 391, 909, 1598], хло- иде серебра [1362], стеклоуглероде [397], сульфидных рудах 638], тантале [237], теллуре [156, 591, 592, 1134, 1613], теллуровом баббите [1656] и теллуриде свинца [342], типографских сплавах [323], титане и двуокиси титана [288, 306, 1262], тории и его окислах [272], уране [1447], окислах урана [878, 1182, 1240] и урановых рудах [1443], ферросплавах [792, 793], фосфоритах [879], хроме [555, 729, 792] и его окислах [54, 55, 571], цинке [976] и цинковых рудах и минералах [1142], цирконии [679] и двуокиси циркония [1368], производственных растворах [205, 882, 1290, 1323, 1324, 1483], сточных и природных водах [429], азотной, серной, соляной, уксусной, фтористоводородной и бромистоводородной кислотах [111, 121, 407, 552, 574, 10081, воздушной пыли [121. [c.81]


    Определение малых количеств кобальта, железа, меди, цинка, свинца, висмута, олова в жаропрочных сплавах на никелевой основе представляет весьма трудную аналитическую задачу. Это связано с необходимостью их предварительного отделения от больщих количеств хрома, никеля, алюминия, молибдена, титана и других элементов. [c.342]

    Наиболее обстоятельное исследование экстракции с помощью диэтилдитиокарбамината натрия проведено Боде [579]. Алюминий не экстрагируется при любых pH оптимальные значения pH для экстрагирования диэтилдитиокарбаминатов многих металлов приведены в монографии Моррисона и Фрейзера [280]. В дополнение к этим данным можно указать, что диэтилдитиокарбаминат марганца довольно хорошо экстрагируется четыреххлористым углеродом из растворов с pH 5,0—5,5 [424, 428, 432]. При pH 4—6 от алюминия могут быть отделены Ре, Мп, 2п, N1, Со, Си, С(1, В1, 5е, Ag, Аз (III), 5Ь(1П).5п(1У),РЬ, Мо. V, 1п, Оа и Т1. Эккерт [697] при определении алюминия в никелевых сплавах успешно удалял никель и примеси Со, Ре, Мп и Си в виде диэтилдитиокарбаминатов. Из различных карбаминатов в данном случае, по мнению Эккерта, диэтилдитиокарбаминат дает наилучшие результаты. При использовании, например, пиперидиндитиокарбамината получаются заниженные результаты (на 10—20%). При отделении больших количеств никеля из органических растворителей лучше всего применять хлорпроизводные углеводородов. Эфиры, высшие спирты и [c.178]

    Значительное число работ, проведенных по определению каталитической активности различных сплавов, показывает, однако, что каталитическая активность иногда повышается со степенью упорядоченности. Так, например, скелетные катализаторы типа никеля Ренея или Бага долго принимались за дырявую решетку с незаполненными А1-узлами, так как алюминий удаляется из сплава при обработке щелочью, т. е, они имели неупорядоченную, деформированную решетку. Однако теперь установлено, что при выщелачивании алюминия остаточная никелевая решетка сжимается до обычной, не имеющей больших механических дефектов. Исследование скоростей гидрирования этилена над медно-никелевыми сплавами показало, что сама медь и богатые ею сплавы сравнительно малоактивны, никель и богатые им сплавы—высокоактивны. [c.154]

    Методы инверсионной вольтамперометрии находят широкое применение для определения Sb в различных материалах, в том числе в чугунах, железе и сталях [1348, 1575], меди и медных сплавах [87, 116, 526, 569, 1348, 1575,1585], олове[221, 222, 224, 225, 242, 318, 526], алюминии [131, 132, 731, 1503], галлии и его солях [243, 245, 293, 303], арсениде галлия [243, 245, 246, 303, 586], кадмии и его солях [302, 318, 737], германии, тетрахлориде и тетрабромиде германия [105, 134], кремнии, двуокиси кремния, тетрахлориде и тетрабромиде кремния и трихлорсиланах [105, 133, 271, 310, 1503], цинке и цинковых сплавах [67, 737], серебре [605, 731J, свинце [833], теллуре [116], мышьяке [303], хроме и его солях [940], барии [125], ртути [528], висмуте [1348], никеле и никелевых сплавах [590], припоях [1348], полиметаллических рудах и продуктах цветной металлургии [116], растворах гидрометаллургического производства [138, 319, 1545], шламах [1175], ниобии и тантале и их соединениях [223, 2901, химических реактивах и препаратах [105], криолите [245, 586], материалах, используемых в злектронной [c.68]

    Можно привести несколько примеров использования экстракционного концентрирования в газовой хроматографии внутрикомплексных соединений. При определении алюминия и железа в медных и никелевых сплавах - маскировали медь и никель пиколиновой кислотой, а железо и алюминий экстрагировали 0,25 Л-1 раствором трифторацетилацетона в бензоле. Хроматографирование проводили при 128 °С в колонке высотой 106,8 см и диаметром 7 мм, заполненной стеклянными шариками. Аналогичный метод был применен при определении алюминия, железа и меди в различных сплавах Газохроматографическое определение скандия после экстракции его в виде ацетилацетоната и трифторацетилацетоната описано японскими исследователями . [c.205]

    Иллюстрируемое на рис. 106 и 107 влияние добавок хрома, марганца и алюминия подтверждается результатами определения долговечности проволочек при 1050° С, проведенного Гес-сенбрухом и Роном [658]. Добавки железа влияют подобно добавкам марганца и хрома, понижая сопротивление никеля окислению. Надо отметить, что совокупные добавки кремния с мар-ганцем, как показывают результаты этих испытаний по определению долговечности проволочек, способны повысить сопротивление никеля окислению. Никелевый сплав, содержавший 3,5% Si и 1% Мп, оказался вдвое долговечнее никелевой проволочки. [c.340]

    Подщелоченный пентозный сироп с концентрацией сухих веществ около 15—20% поступает в смеситель 3 (рис. 91), где смешивается с газообразным водородом в соотношении 1 7, после чего нагревается до 120—125° в трубчатом подогревателе 4. Горячая газожидкостная смесь подается под давлением 60—100 атл1 в батарею реакторов 7, заполненных скелетным никелевым катализатором. Его получают сплавлением никеля и алюминия в определенных соотношениях с добавкой небольших количеств других металлов. Полученный сплав разбивают на небольшие куски, загружают в реакторы и там обрабатывают водным раствором едкого натра для растворения алюминия. При прохождении газожидкостной смеси через реакторы содержащиеся в ней моносахариды восстанавливаются до соответствующих многоатомных спиртов. [c.373]


    В табл. 2 приведены результаты определения активности никелевых и серебряных катализаторов, приготовленных различными способами. Несмотря на значительное различие поверхности у никеля, полученного носстановлением из окисла, и карбонильного никеля, значения удельной каталитической активности этих катализаторов близки. Несколько ниже удельная каталитическая активность никелевого катализатора, полученного выщедачиванием сплава с алюминием. Возможно, что это связано с аедолным удалением алюминия из состава катализатора. [c.68]

    Получены никелевые катализаторы двух типов 1) скелетный из сплавов Ni—Al (обработанных термически) путем выщелачивания и 2) нескелетный путем восстановления смеси солей никеля и алюминия с изменением содержания А1 в пределах 0,5—10 ат.%. Впервые обнаружено уменьшение параметра решетки скелетного и восстановленного никеля при некоторых условиях термической обработки исходного сплава Ni—Al и определенном содержании А1 в исходной смеси окислов Ni и. А1. Это явление объяснено эпитаксическим влиянием небольшого количества сильно диспергированной фазы NiAl. [c.466]

    Определени-е малых количеств кобальта, железа, меди, цинка, свинца, олова и висмута -в жаропрочных сплавах на никелевой основе представляет собой весьма трудную аналитическую задачу, так как связано с предварительным отделением их от больших содержаний хрома, никеля, молибдена, алюминия и некоторых других компонентов. Например, медь, цинк, свинец, висмут и другие элементы осаждают в виде сульфидо1В, применяя главным образом сероводород, а затем обрабатывают их кислотами и далее в зависимости от определяемого элемента применяют осадители — аммиак, метиловый фиолетовый, тиосульфат натрия и др. [c.275]


Смотреть страницы где упоминается термин Определение алюминия в никеле и никелевых сплавах: [c.314]    [c.273]    [c.137]   
Смотреть главы в:

Аналитическая химия алюминия -> Определение алюминия в никеле и никелевых сплавах




ПОИСК





Смотрите так же термины и статьи:

Алюминий в сплавах

Никелевые сплавы

Никель и никелевые сплавы

Никель определение

Сплавы никелевые, определение

Сплавы никеля

Сплавы никеля Jt И h I Сплав



© 2025 chem21.info Реклама на сайте