Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сплавы никелевые, определение

    Прямое определение Sb в сочетании с рядом других элементов производится в самых разнообразных материалах, в том числе в алюминии [54, 55, 1134, бериллии и его соединениях [305, 1297], боре [778, 11171 и фосфиде бора [26], ванадии и его окислах [234, 491, 1117], висмуте [809, 909, 1134], вольфраме и его соединениях [195, 739, 795, 1265], вольфрамовых рудах [1480], германии и его соединениях [559, 634, 905], горных породах [386, 730, 1182, 1240, 1336, 1443, 1599], графите и углероде [235, 397, 612], жаропрочных и тугоплавких сплавах [176, 177, 379, 1278, 1593], железе [425, 1134, 14411, железных рудах и минералах [198, 386, 636, 971, 1336], сталях [176, 546, 1278, 1441, 1593] и чугуне [61, 274, 546, 1250], золоте [404, 754, 909, 1095] и его сплавах [196, 389,390, 1167], индии [1168, 1308] и сплавах на его основе [814, 815, 1267], иттрии и его окислах [234, 272], алюмоиттриевом гранате [82], кадмии [598, 599, 1134] и кадмиевых сплавах [819], кобальте [60, 153, 1134], кремнии [252, 1619], кварце [154], карбиде кремния 109, 110, 288, 789, 790, 1353], кремниево-медных сплавах 594], силикатах [1586], технических стеклах [612, 1579], меди 129, 482, 964, 997, 1176, 1599, 1609, 1645, 1654], медных сплавах 96, 482, 1048, 1188, 1457,1463, 1566], окиси меди [199], продуктах медеплавильного производства [3601 и медных электролитах [1298, 1600], молибдене и его соединениях [104, 237, 308, 795, 1325, 1347, 1443], мышьяке [472, 1134], никеле и никелевых сплавах [486], ниобии и его окислах [49, 972], олове [582, 744, 782, 812, 900, 1684] и его сплавах [1210, 1494, 1495], полупроводниковых материалах [668, 678, 806, 1298, 16841, припоях [210, 1101], свинце [481, 534, 908, 1154, 1155,1193, 1543,1655], свинцовых сплавах [126, 871], рудах [53, 667, 806, 1143] и пылях [811], РЗЭ и их окислах [234, 353], селене [154, 155, 499, 747, 818, 1134], селениде ртути [715], сере [189, 1134], серебре [388, 390, 391, 909, 1598], хло- иде серебра [1362], стеклоуглероде [397], сульфидных рудах 638], тантале [237], теллуре [156, 591, 592, 1134, 1613], теллуровом баббите [1656] и теллуриде свинца [342], типографских сплавах [323], титане и двуокиси титана [288, 306, 1262], тории и его окислах [272], уране [1447], окислах урана [878, 1182, 1240] и урановых рудах [1443], ферросплавах [792, 793], фосфоритах [879], хроме [555, 729, 792] и его окислах [54, 55, 571], цинке [976] и цинковых рудах и минералах [1142], цирконии [679] и двуокиси циркония [1368], производственных растворах [205, 882, 1290, 1323, 1324, 1483], сточных и природных водах [429], азотной, серной, соляной, уксусной, фтористоводородной и бромистоводородной кислотах [111, 121, 407, 552, 574, 10081, воздушной пыли [121. [c.81]


    При затруднениях в определении скорости коррозии рекомендуется пользоваться распределением металлов по группам, в пределах которых контакт может считаться допустимым. Для атмосферных условий эксплуатации можно выделить пять таких групп I — магний П — алюминий, цинк, кадмий П1 — железо, углеродистые стали, свинец, олово IV — никель, хром, коррозионностойкие стали (в пассивном состоянии) типа Х17 и 18—8 V — медно-никелевые и медноцинковые сплавы, медь, серебро, золото. [c.74]

    Почти все конструкционные металлы (например, углеродистые и низколегированные стали, латунь, нержавеющие стали, дюраль, магниевые, титановые и никелевые сплавы и многие другие) подвержены в определенных условиях КРН. К счастью, число химических сред, вызывающих подобные разрушения, ограничено, а требуемый для растрескивания уровень напряжений достаточно высок и нечасто достигается на практике. Накопив знания об условиях возникновения опасности коррозионного растрескивания (воздействие специфических сред, уровень допустимых напряжений), в дальнейшем при проектировании конструкций удастся исключить возможность коррозионного растрескивания под напряжением. К сожалению, не все металлические конструкции, испытывающие большие напряжения, проектируются сейчас о учетом возможности растрескивания. [c.29]

    Часто каталитические свойства металла или сплава зависят от их способности хемосорбировать определенные компоненты среды. Поэтому неудивительно, что переходные металлы обычно являются хорошими катализаторами и что электронные конфигурации в сплавах, благоприятствующие каталитической активности и пассивации, сходны между собой. Например, если палладий, содержащий 0,6 -электронных вакансий на атом в металлическом состоянии, катодно насыщен водородом, он теряет свою каталитическую активность для ор/по-па/>а-водородной конверсии [59] -уровень заполнен электронами растворенного водорода, и металл не может больше хемосорбировать водород. По каталитической эффективности Рё—Аи-сплавы аналогичны палладию, пока не достигнут критический состав 60 ат. % Аи. При этом и большем содержании золота сплав становится слабым катализатором. Золото, будучи непереходным металлом, снабжает электронами незаполненный уровень палладия магнитные измерения подтверждают, что -уровень заполнен при критической концентрации золота. Результаты исследований каталитического влияния медно-никелевых сплавов различного состава на реакцию 2ННа представлены на рис. 5.17. При 60 ат. % Си и [c.98]


    С). Однако помимо способности к сжижению, позволяющей увеличить плотность водорода в 836 раз, последний в отличие от метана может храниться в форме гидридов металлов. Цветные металлы, такие, как лантан или никелевые сплавы, могут селективно абсорбировать до 5 масс. % водорода при окружающей температуре и низких рабочих давлениях и высвобождать его при нагреве до определенного температурного уровня. Хранение водорода в виде гидридов металлов связано с необходимостью применять дорогостоящие и даже редкие металлы, поэтому ведутся работы по замене их более дешевыми, широко распространенными и легкодоступными металлами [3]. [c.234]

    Методы инверсионной вольтамперометрии находят широкое применение для определения Sb в различных материалах, в том числе в чугунах, железе и сталях [1348, 1575], меди и медных сплавах [87, 116, 526, 569, 1348, 1575,1585], олове[221, 222, 224, 225, 242, 318, 526], алюминии [131, 132, 731, 1503], галлии и его солях [243, 245, 293, 303], арсениде галлия [243, 245, 246, 303, 586], кадмии и его солях [302, 318, 737], германии, тетрахлориде и тетрабромиде германия [105, 134], кремнии, двуокиси кремния, тетрахлориде и тетрабромиде кремния и трихлорсиланах [105, 133, 271, 310, 1503], цинке и цинковых сплавах [67, 737], серебре [605, 731J, свинце [833], теллуре [116], мышьяке [303], хроме и его солях [940], барии [125], ртути [528], висмуте [1348], никеле и никелевых сплавах [590], припоях [1348], полиметаллических рудах и продуктах цветной металлургии [116], растворах гидрометаллургического производства [138, 319, 1545], шламах [1175], ниобии и тантале и их соединениях [223, 2901, химических реактивах и препаратах [105], криолите [245, 586], материалах, используемых в злектронной [c.68]

    Никель и некоторые из его сплавов, подобно большинству других металлов и сплавов, в определенных условиях могут подвергаться межкристаллитной коррозии. На практике межкристаллитная коррозия никелевых сплавов обычно встречается вокруг сварных соединений и бывает результатом влияния самого процесса сварки на структуру материала в этих областях. Сплавы, подвергающиеся другим столь ж неблагоприятным термообработкам, также склонны к этому виду коррозии. Составы большинства промышленных никелевых сплавов тщательно контролируются с тем, чтобы свести к минимуму вероятность возникновения межкристаллитной коррозии в сварных изделиях в процессе эксплуатации. [c.145]

    Сплавы никелевые и медно-никелевые. Метод определения сурьмы. ГОСТ 6689. 15-75. [c.194]

    Если в растворе присутствует только одно окрашенное соединение, то колориметрическое определение не вызывает затруднений. Картина совершенно меняется при определении примесей в железных рудах, черных металлах, медных сплавах, никелевых электролитных ваннах и т. п., когда в испытуемом растворе присутствуют различные ионы, имеющие собственную окраску. Отделение или связывание последних обычными методами требует затраты времени и реактивов. В ряде подобных случаев колориметрическое определение можно выполнить, не прибегая к отделению посторонних ионов. Это возможно при том условии, что реактив, применяемый для определения, не взаимодействует с окрашенными примесями с образованием новых окрашенных соединений. [c.153]

    По параметрической диаграмме можно определить и другие характеристики, например предельно допустимую температуру эксплуатации. В этом случае на оси ординат параметрической диаграммы задают предельно допустимые значения удельной потери массы металла или глубины коррозионного разрушения. Затем движутся до пересечения с линией lg — Я или gh — Р, затем вверх по ординате при постоянном значении Р до пересечения с линией Р — 1/7 , соответствующей определенному времени эксплуатации и, наконец, от точки пересечения вправо при постоянном значении ординаты до пересечения с осью ординат 1/Г. Точка пересечения соответствует определенной величине предельно допустимой температуры. Ниже приводятся параметрические диаграммы [131 для ряда сталей и сплавов, широко используемых при высоких температурах. Параметрические диаграммы построены в основном по экспериментальным данным (точки на диаграмме). Если диаграмма построена по значениям констант кинетических и температурных уравнений (51) и (52) окисления металлов, то экспериментальные точки отсутствуют. При построении диаграмм применялись следующие величины и их единицы , д — г/см , к — мм, т — ч, Г — К, Q — кал/моль. Эти отступления от системы СИ для Q сделаны сознательно, для того чтобы не снизить точность диаграммы. При использовании вышеуказанных единиц шкалы lg и lg /г почти совпадают для сталей и никелевых сплавов. Параметрический метод позволяет надежно проводить интерполяцию, а также экстраполяцию. Экстраполяцию можно проводить по температуре на 50—100 °С, по времени на 1—1,5 порядка [13]. [c.309]

    Определение алюминия в никеле и никелевых сплавах [c.218]

    Для определения алюминия в никелевых сплавах можно рекомендовать комплексометрический метод [2531, основанный на титровании избытка комплексона III в присутствии индикатора метилтимолового синего с использованием фторида для повышения селективности. [c.218]


    Структура пассивной пленки на сплавах, как и пассивной пленки вообще, была описана и теорией оксидной пленки и адсорбционной теорией. В соответствии с оксидно-пленочной теорией, защитные оксидные пленки формируются на сплавах с содержанием легирующего компонента выше критического, а незащитные — на сплавах ниже критического состава. В случае преимущественного окисления пассивной составляющей сплава, например хрома, защитные оксиды (такие как СГаОз) формируются, только если содержание хрома в сплаве превышает определенный уровень. Эта точка зрения не позволяет делать никаких количественных прогнозов, а тот факт, что пассивная пленка на нержавеющих сталях может быть катодно восстановлена и не соответствовать стехиометрическому составу, остается необъясненным. Согласно адсорбционной теории, в водной среде кислород хемо-сорбируется на Сг—Ре-сплавах выше критического состава, обеспечивая пассивность, но на сплавах ниже критического состава он реагирует с образованием непассивирующей оксидной пленки. Насколько данный сплав благоприятствует образованию хемосорбционной пленки или пленки продуктов реакции, зависит от электронной конфигурации поверхности сплава, особенно от взаимодействия -электронов. Так называемая теория электронной конфигурации ставит в связь критические составы с благоприятной конфигурацией -электронов, обеспечивающей хемосорбцию и пассивность. Теория объясняет природу взаимодействия электронов, определяющую, какой из компонентов придает сплаву данные химические свойства, например, почему свойства никеля преобладают над свойствами меди в медно-никелевых сплавах, содержащих более 30—40 % N1. [c.91]

    Мы полагаем, что наиболее поразительной закономерностью поведения различных систем сплавов является общность эффектов, связанных с характером скольжения. Планарное скольжение может вызываться рядом факторов, включая уменьшение энергии дефектов упаковки, понижение температуры, ближний и дальний порядок, образование кластеров и разрезание выделение дислокациями. Все эти факторы отмечались в разных местах данной главы и в предшествующих обзорах. Хотя корреляция планарного скольжения с КР и водородным охрупчиванием наиболее полно и подробно исследована для аустенитных нержавеющих сталей, она применима и в случае других аустенитных сплавов, алюминиевых сплавов, титановых а- и р-сплавов, а возможно, и в никелевых сплавах. Очевидным исключением служит семейство ферритных и мартенситных сталей, однако в этом случае число работ, в которых исследован характер скольжения, относительно невелико. Ниже обсудим возможность того, что в подобных сплавах тип скольжения не имеет большого значения, но предстоящие исследования этих материалов все же должны включать определение типа скольжения, например, с помощью сравнительно простой методики линии скольжения [201]. Это позволит установить, распространяется ли отмеченная корреляция на о. ц. к. стали. Часто высказываемое мнение о том, что в железе (и, как следствие, в стали) скольжение всегда носит сильно непланарный характер,— ошибочно. Например, понижение температуры делает скольжение в чистом железе заметно более планарным и [c.120]

    Легирование никеля молибденом в значительной степени повышает его стойкость в восстановительных средах. Как в аэрированных, так и в деаэрированных кислотах эти сплавы имеют потенциалы коррозии более отрицательные, чем их Фладе-потен-циалы [4, 5], т. е. по определению 1 в гл. 5 их нельзя считать пассивными. Так, все коррозионные потенциалы никелевых сплавов с 3— 22,8 % Мо в насыщенном водородном 5 % растворе НзЗО не отличаются более чем на 2 мВ от потенциала платинированного платинового электрода в том же растворе [4]. Несмотря на отрицательные значения коррозионного потенциала, сплав, содержащий, например, 15 % Мо, корродирует в деаэрированном 10 % [c.361]

    Испытания металлов на длительную прочность производят Пр И П О СТО-янной темшературе. В рабочих же условиях температура часто колеблется в определенных пределах. Эксперименты показали, что при циклическом изменении температуры предел длительной прочности для большинства сталей получается таким же, как при максимальной температуре в цикле. Для никелевых сплавов он несколько выше. [c.38]

    Пористость. Основной характеристикой, определяющей защитные свойства катодных покрытий, является их пористость В связи с тем, что N1 — Р-покрытия — катодные по отношению ко многим машиностроительным материалам (таким, как сталь, алюминиевые сплавы и др ), исследователи уделяют большое внимание пористости никелевого покрытия, осажденного химически Установлено, что химические N1 — Р-покрытия менее пористые, чем покрытия той же толщины но полученные электрохимическим способом. При определении пористости никелевых покрытий различной толщины было обнаружено [2], что химически восстановленные никелевые покрытия толщиной 8—10 мм по пористости соответствовали электролитическим осадкам толщиной 20 мкм [c.11]

    Определение в никеле и никелевых сплавах [c.152]

    Последнее уравнение показывает, что в приповерхностном слое конденсирую гея компоненты с небольшим поверхностным натяжением. На это же указывает описанная выше линейная связь работы поверхности с теплотой сублимации. Из уравнения (2.15) следует, что состав поверхности легкоплавкого сплава индий — свинец должен меняться в соответствии с экспоненциальной функцией от обратной температуры. Однако для. количественной оценки состава модель идеального раствора иногда неприемлема, и в таких случаях в уравнение можно вводить энергию связи между соседними атомами. На рис. 2.8 показаны результаты теоретического и экспериментальг ного определения состава объема и поверхности медно-никелевого сплава. Экспериментальное определение состава поверхности проводилось методами ионной спектроскопии и хемосорбции. [c.21]

    Для определения ЗЬ в меди, ее соединениях и сплавах наиболее часто используются спектральные методы (табл. 12). Экстракционно-фотометрическими методами с применением кристаллического фиолетового ЗЬ определяют в черновой меди [649], медных концентратах [190], медно-цинковых сплавах [685], оловянных бронзах [94], медно-никелевых сплавах [686] с применением метилового фиолетового — в конверторной меди [359], безоловянных бронзах [93] и с применением родамина С — в медных сплавах [1580]. Эти методы позволяют определять ЗЬ при ее содержании до [c.137]

    Джекобе [1074] определял вольтамперометрически 5,0-10 — —2,50-10 г-ион л Аи анодным окислением золота, электролитически осажденного на электроде из угольной пасты. Электролиз проводят при +0,1 в (отн. н.к.э.) в течение 15 мин, анодное растворение выполняют при потенциале от +0,3 до +1,3 в, анодный пик наблюдается при +0,85 в. Фоном служит 0,1 М НС1. Метод позволяет анализировать смеси Аи + Ag. Предложен [535] инверсионный вольтамперометрический метод определения 10 —10 % Аи с применением электрода из угольной пасты. Метод заключается в электролитическом выделении золота при контролируемом потенциале +0,2 в на поверхности электрода в виде пленки на фоне 0,1—1,0 М НС1 в течение 15—30 мин с последующим растворением золота при линейно изменяющемся потенциале от +0,2 до + 1,3 б. Метод применен для определения 1-10 % Аи в сурьме 0,22—1,01% Аи в покрытиях на вольфраме и молибдене 0,32% Аи в покрытиях на вольфрамовой нити, намотанной на никелевую деталь (0,9—1,3)-10 % Аи в золе растений. Ошибка при определении 5-10 % Аи равна +12%. Позже этот метод применен [91] для определения 0,3 мкг мл Аи в полупроводниковых сплавах Sn — Au после разделения компонентов методом тонкослойной хроматографии. Фон 1 М НС1, потенциал предварительного электролиза +0,2 в, потенциал электрорастворения 0,2—1,3 в, время накопления 10 мин. Найдено 0,29+0,01 мкг мл Аи (и = 6, а = =0,95), коэффициент вариации 2,8%. Монин [1242, 1243] определял 25—500 нг мл Аи методом пленочной полярографии с накоплением. Золото выделяют в течение 5 мин электролизом на электроде [c.174]

    Анализ трех проб медно-никелевого сплава спектрофотометрическим методом дал следующие значения массовой доли железа 0,090 0,095 0,103%. Вычислить относительную погрешность определения. [c.182]

    Применяют для фотометрического определения V/ в сталях и никелевых сплавах. Мешают Си, Мо и щавелевая кислота. [c.205]

    Определение ниобия в никелевых сплавах [449]. Определению не мешают 2- Ю -кратные количества щавелевой, лимонной кислот, ЫаР 10 -кратные количества ЭДТА и НаО . В присутствии 500-кратных количеств ЭДТА не мешают 10-кратные количества А1, В1, С(1, Си, Оа, 1п, Ьа, Мп, N1, РЬ, УЬ и 1п, равные количества Со, Ре и Т1. [c.130]

    Реакцию проводили как при атмосферном, так и при повышенном давлении водорода. При атмосферном давлении гидрирование шло в стеклянной термостатированной утке , при повышенных давлениях — в качаюш,ейся установке с четырьмя автоклавами. Некоторые кинетические опыты проведены на установке, позволяюш ей измерять расход водорода при постоянном повышенном давлении ( утка под давлением ). Катализаторы готовили выщелачиванием сплавов Ш—А1 (1 1), Си—А1(1 1) и Со—А1 (1 3) [6], непрерывно пропуская 1,5—2%-ный раствор NaOH через слой измельченного сплава при определенной температуре (90—95° для Ni) до полного прекращения выделения водорода. Никелевый катализатор готовили путем прибавления небольших порций сплава (35 г) к 20%-ному раствору NaOH (450 мл) при 15—20° с последующим выдерживанием реакционной смеси при 50° в течение [c.255]

    Наиболее легко давильной обработке в холодном состоянии подвергаются алюминий и его сплавы, для некоторых сплавов может пог )ебоваться межоперационный отжиг. Медь, углеродистая и нержавеющая стали, а также никелевый сплав при деформации при комнатной темпфатуре в зависимости от толщины обрабатываемого материала вьщерживают определенную степень деформации. В связи с этим заготовку следует подвергать межоперационной термической обработке. Обкатка без промежуточной термической обработки возможна при соответствующем подогреве заготовок сравнительно небольшой толщины непосредственно на обкатной машине в процессе обработки. [c.140]

    Можно привести несколько примеров использования экстракционного концентрирования в газовой хроматографии внутрикомплексных соединений. При определении алюминия и железа в медных и никелевых сплавах - маскировали медь и никель пиколиновой кислотой, а железо и алюминий экстрагировали 0,25 Л-1 раствором трифторацетилацетона в бензоле. Хроматографирование проводили при 128 °С в колонке высотой 106,8 см и диаметром 7 мм, заполненной стеклянными шариками. Аналогичный метод был применен при определении алюминия, железа и меди в различных сплавах Газохроматографическое определение скандия после экстракции его в виде ацетилацетоната и трифторацетилацетоната описано японскими исследователями . [c.205]

    Допустимые количества компонентов, присутствующие в сталях и никелевых сплавах, при определении фосфора по реакциям с изученными 1фасителями приведены в табл.2. Как видно из таблицы. железо не мешает определению фосфора, если присутствует в 150-1фатном количестве по отношению к фосфат-ионам. Между тем в сталях оно составляет основу образца. Устранение мешающего 66 [c.66]

    ГОСТ 6689—53. Сплавы никелевые н медноннкелевые. Методы определения химического состава. Стандартгиз, 1953, стр. 8. [c.57]

    Многие из величин Стс еще требуется определить количественно или хотя бы качественно. Тем не менее мы предположим, что при определенных составах и микроструктурах сплавов, средах и состояниях напряжения некоторые эффекты должны быть доминирующими. В частности, применяя этот метод анализа к основному примеру поведения I типа, а именно к случаю суперсплава на никелевой основе с умеренно крупным зерном [14, 18—21], мы отметим в соответствии с эффектами, перечисленными в табл. 5, следующие положения. В такой упрочненной системе, как данный сплав (временное сопротивление 1033 МПа даже при 760 °С [169]), маловероятно, чтобы какие-либо эффекты твердого раствора существенно влияли на внутренние напряжения. Выше отмечалось, что зернограничными эффектами также пренебрегали. Основной эффект, как можно предположить, в этом случае будет связан с величинами Стс, аналогичными входящим в уравнение (19), Иными словами, упрочнение рассматриваемой системы на воздухе обусловлено противодействием образованию и движению дислокаций со стороны окалины с хорошей адгезией, формирующейся при испытаниях на ползучесть на воздухе, но отсутствующей при испытаниях в вакууме (см. рис. 10) или в горячей солевой среде [14]. Микрофотографии, представленные на рис. 10, показывают также, что в результате ползучести (как на воздухе, так и в вакууме) поверхностные слои подложки постепенно становятся однофазными. На воздухе образуется фаза 7, вероятно, посредством селективного окисления алюминия и титана, а в вакууме образуется фаза у вследствие испарения хрома. Важно, что ни в одном случае поверхностные слои подложки не являются днсперсноупроч-ненными. Таким образом, эти эффекты будут иметь тенденцию к самокомпенсации при любых попытках, подобных этой, проанализировать сравнительное поведение системы на воздухе и в вакууме. [c.37]

    Значительное число работ, проведенных по определению каталитической активности различных сплавов, показывает, однако, что каталитическая активность иногда повышается со степенью упорядоченности. Так, например, скелетные катализаторы типа никеля Ренея или Бага долго принимались за дырявую решетку с незаполненными А1-узлами, так как алюминий удаляется из сплава при обработке щелочью, т. е, они имели неупорядоченную, деформированную решетку. Однако теперь установлено, что при выщелачивании алюминия остаточная никелевая решетка сжимается до обычной, не имеющей больших механических дефектов. Исследование скоростей гидрирования этилена над медно-никелевыми сплавами показало, что сама медь и богатые ею сплавы сравнительно малоактивны, никель и богатые им сплавы—высокоактивны. [c.154]

    Прн измерении толщины изготовляют микрошлнф с поперечным разрезом покрытия. Для предотвращения отслаивания иокрытия, а также во избежание завала кромок, деталь с определяемым покрытием покрывают слоем другого металла толщиной >30 мкм. Этот слой должен быть достаточно тверд, надежно сцеплен с металлом покрытия, отличаться по цвету. Так, иапример, при определении толщины покрытий нз иикеля применяют меднение из кислых электролитов. Деталь с никелевым покрытием должна быть тщательно протравлена (в 50 %-ном растворе соляной кислоты) н обезжирева Оксидные пленки на алюминии и его сплавах, а также хромовые покрытия не защищают специальным слоем. [c.273]

    В табл. 28 приведены данные о коррозионном поведении никеля и сплава Монель 400 на среднем уровне прилива в Тихом океане вблизи Зоны Панамского канала. За 16 лет средняя скорость коррозии никеля, определенная по потерям массы, составила всего 6,9 мкм/год, однако максимальная глубина питтинга достигла 3,07 мм, причем питтннгп были глубокими и широкими. Таким образом, плакирование никелем или электроосаладение никелевых покрытий для заиц1ты от коррозии в зоне прилива неэффективно. [c.79]

    Чирков [481] предложил метод определения алюминия потенциометрическим некомпенсационным титрованием фторидом, с использованием алюминиевого индикаторного электрода в паре с электродом из нихрома. Оптимальное значение pH 3—7, насыщение раствора хлоридом натрия увеличивает резкость скачка потенциала [311, 412, 481]. Метод Чиркова по сравнению с методом Тредвелла и Бернаскони имеет ряд преимуществ продолжительность титрования меньше и не нужно расходовать этиловый спирт. Метод Чиркова нашел широкое применение в лабораториях. Его используют для определения алюминия в стали [248, 418], в никелевых [95], цинковых [65] и магниевых [65, 66] сплавах, в шлаках [228], в почвах [8] и в других объектах. Исследованию этого метода посвящены работы [151, 202, 311, 312]. [c.87]

    Наиболее обстоятельное исследование экстракции с помощью диэтилдитиокарбамината натрия проведено Боде [579]. Алюминий не экстрагируется при любых pH оптимальные значения pH для экстрагирования диэтилдитиокарбаминатов многих металлов приведены в монографии Моррисона и Фрейзера [280]. В дополнение к этим данным можно указать, что диэтилдитиокарбаминат марганца довольно хорошо экстрагируется четыреххлористым углеродом из растворов с pH 5,0—5,5 [424, 428, 432]. При pH 4—6 от алюминия могут быть отделены Ре, Мп, 2п, N1, Со, Си, С(1, В1, 5е, Ag, Аз (III), 5Ь(1П).5п(1У),РЬ, Мо. V, 1п, Оа и Т1. Эккерт [697] при определении алюминия в никелевых сплавах успешно удалял никель и примеси Со, Ре, Мп и Си в виде диэтилдитиокарбаминатов. Из различных карбаминатов в данном случае, по мнению Эккерта, диэтилдитиокарбаминат дает наилучшие результаты. При использовании, например, пиперидиндитиокарбамината получаются заниженные результаты (на 10—20%). При отделении больших количеств никеля из органических растворителей лучше всего применять хлорпроизводные углеводородов. Эфиры, высшие спирты и [c.178]

    МУР проводилось для определения размеров частиц, присутствующих в пробах. Кривые малоуглового рассеяния от растворов были получены на установке КРМ-1. Применялось СиКц-излучение, отфильтрованное никелевым фильтром. Расчет радиуса инерции проводился по методу Гинье. Результаты МУР (таблица 1) показали, что размеры частиц, находящихся в полученных из сплавов пробах, хорошо коррелируют с размерами фуллереновых кластеров в применяемом растворителе. [c.15]

    Вытеснять данный элемент из его внутрикомплексного соедине ПИЯ способны только те элементы, которые стоят левее в этом ряду [226]. Это свойство было использовано для отделения марганца от сопутствующих элементов при определении его в титане [638], никелевых сплавах [952]. Производят экстракцию ряда элементов в виде диэтилдитиокарбаминатов, и затем марганец вытесняют в водную фазу путем встряхивания экстракта с водным раствором цинка. Использовалась [847] так называемая вытеснительная субстехиометрия для выделения марганца из его диэтилдитиокарбаминатного комплекса с помощью растворов Hg(II), взятой в субстехиометрическом количестве [c.121]

    Для отделения микроколичеств ЗЬ от В1 соосаждение проводят из раствора, 1,2 М по HNOз [1397]. Вместе с ЗЬ соосаждает-ся Зп. Соосаждению ЗЬ мешает Г и ряд других веществ, маскирующих ЗЬ [46]. Вслед за МпОг по эффективности соосаждать ЗЬ следует Ге(ОН)з, затем А1(0Н)з. Сурьма количественно соосажда-ется с Ге(ОН)з из растворов с pH 6—9 [1073]. Для отделения микроколичеств ЗЬ при ее определении в никеле и медно-никелевых сплавах в качестве соосадителя рекомендуется НаЗпОд [986]. При определении ЗЬ в железе в качестве коллектора используют Сг(ОН)з [1399], а при выделении ее из хрома — МпОз или НоЗпОз, л то время как из аммиачно-щелочных растворов — Ге(ОН)д [689]. [c.101]

    В никеле и его сплавах Sb > 2-10- % определяют спектральным методом без предварительного отделепия [108]. В другом методе [486] предусмотрено два варианта определения Sb. По одному варианту анализируют металлические образцы (дуга переменного тока 7 —12 а, спектрограф ИСП-28 или ДФС-13) предел обнаружения Sb 1 -10- % (Sr = 0,1 -ь 0,2). По другому варианту пробу переводят в окислы спектры возбуждают дугой переменного тока 6а. При спектральном определении Sb 2,5-10 % в никелевых электролитах применено групповое концентриро- [c.141]


Смотреть страницы где упоминается термин Сплавы никелевые, определение: [c.106]    [c.195]    [c.168]    [c.182]    [c.314]    [c.146]    [c.62]    [c.142]   
Калориметрические (фотометрические) методы определения неметаллов (1963) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Никелевые сплавы

Определение алюминия в никеле и никелевых сплавах

Определение алюминия в ннкеле н никелевых сплавах

Определение алюминия химическими никелевых сплавах

Определение кремния в железных, ферромагнитных, никелевых и медных сплавах

Определение никелевых сплавах, спектрально

Определение свинца в меди, никеле, кадмии, кобальте, цинке, молибдене, вольфраме, реактивных солях этих металлов, в сплавах— медных, никелевых, цинковых и др

Определение титана в сплавах на никелевой основе

Осмий определение в железо-медно-никелевых сплавах

Сплавы никелевые, определение железа

Сплавы никелевые, определение меди

Фотоколориметрическое определение церия в сплавах на никелевой основе



© 2024 chem21.info Реклама на сайте