Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Очистка жидкого воздуха от ацетилена

    В работе [70] описаны результаты исследования адсорбции углеводородов из воздуха при низких температурах. При постоянных условиях на входе (рис. 24) углеводороды проходят через адсорбент с различной скоростью. Независимо от вида углеводорода концентрационный фронт при низких концентрациях движется с большей скоростью, чем при высоких концентрациях, причем эта скорость относительно постоянна. Наиболее медленно по слою адсорбента движется ацетилен и пропилен. В указанной работе отмечается, что теоретически концентрация углеводорода за адсорбером никогда не бывает нулевой, в связи с чем для удаления оставшихся углеводородов необходима дополнительная очистка жидкого кислорода. [c.118]


    Для предотвращения накопления опасных примесей прибегают к сливам жидкого кислорода, удорожающим производство, но и этот прием не исключает возможности взрывов. Наиболее эффективным методом является тщательная очистка разделяемого воздуха от вредных примесей, для чего иногда используют адсорбцию на силикагеле. При этом эффективно извлекается только ацетилен, но не алканы. Весьма эффективной очисткой является окисление ацетилена на катализаторах из окислов металлов при небольшом подогреве (150—180°С). [c.80]

    Содержание взвешенных нерастворимых частиц можно существенно снизить также путем медленного испарения жидкой фазы целевого продукта без кипения. Глубокая очистка кислорода перед подачей в колонну низкотемпературной ректификации начинается с очистки воздуха от влаги, диоксида углерода и ацетилена методом адсорбции. Обычно этот процесс проводят комплексно, т. е. одновременно извлекают из потока газа влагу и диоксид углерода на цеолитах. Из промыш.ленных цеолитов рекомендуется цеолит марки КаХ, емкость которого по диоксиду углерода при очистке влажного воздуха равна 2,3-3,5%, а динамическая активность по парам воды составляет 2,5-5,5% от массы сорбента при давлении от 2,5 до 20 МПа. Ацетилен и другие углеводороды адсорбируются почти полностью и не оказывают влияния на очистку воздуха от диоксида углерода. [c.913]

    Осушка и очистка воздуха цеолитами имеется не на всех установках, и опыт их эксплуатации еще мал. Адсорбция взрывоопасных примесей в регенераторах еще достаточно не используется в промышленной практике. Поэтому при эксплуатации большинства установок приходится учитывать тот факт, что практически весь ацетилен, содержащийся в воздухе (особенно при повышенных его концентрациях), поступает (или может поступать) с ним в ректификационную колонну. Чтобы установить, как распределяется поступающий с воздухом ацетилен в кислородном аппарате и какие опасности с этим связаны, необходимо знать свойства системы ацетилен — жидкий воздух и ацетилен — жидкий кислород. [c.374]

    Исключение составляют блоки разделения воздуха, оснащенные средствами очистки воздуха от ацетилена до его поступления в куб нижней колонны (каталитическая очистка и др.). В этих установках (блоках разделения) при содержании ацетилена в кубовой жидкости более 0,02 см 1дм следует принять меры для выяснения причин неработоспособности средств очистки воздуха, а анализ на ацетилен кубовой жидкости и жидкого кислорода из конденсатора следует проводить через 2 ч. При содержании ацетилена в кубовой жидкости более 0,1 см 1дм или в конденсаторе более 0,2 см 1дм блок разделения должен быть остановлен на полный отогрев. [c.152]


    Платиновые сплавы чувствительны к примесям, содержащимся в аммиачно-воздушной смеси. В присутствии 0,0002% фосфористого водорода в газовой смеси степень конверсии аммиака снижается до 80%. Менее сильными контактными ядами являются сероводород, ацетилен, хлор, пары смазочных масел, пыль, содержащая окислы железа, окись кальция, соли калия, а также песок и др. Поэтому воздух и аммиак до поступления в конвертор тщательно очищают. Воздух промывают водой или раствором соды, который поглощает кислые пары и газы жидкий аммиак очищают перегонкой (дистилляция). В качестве второй ступени очистки газов применяются сухие фильтры, фильтрующими материалами служат шинельное сукно, керамические трубки, фильтровальный картон и др. [c.368]

    Ацетилен, поступающий на гидратацию, должен быть предварительно очищен от примесей (сероводорода, фосфористого водорода и аммиака), вредно влияющих на работу катализатора и увеличивающих потери. Кроме указанных газов в ацетилене возможно присутствие небольших количеств воздуха и углекислого газа, а при возврате непрореагировавшего ацетилена снова в цикл—также и ацетальдегида. От всех этих примесей ацетилен должен быть освобожден, прежде чем он будет подан в реактор. Для очистки ацетилена служат очистительные колонны, заполненные твердыми поглотителями или имеющие насадку, орошаемую жидкими поглотителями. [c.157]

    Разумеется, криптон и ксенон — наименее летучие компоненты воздуха — скапливаются вместе с жидким кислородом в самой теплой части аппарата, откуда их и выделяют. Жидкий кислород подвергают ректификации, в результате чего получают бедный криптоновый концентрат, содержащий 0,1—0,2% криптона и еще меньше ксенона. Впрочем, эпитет бедный здесь довольно относителен, если учесть, что концентрат в 400 раз богаче криптоном, чем исходный кислород. Прежде чем продолжить ректификацию, концентрат очищают от углеводородов, главным образом ацетилена и метана. Эта операция диктуется соображениями безопасности ацетилен и метан, будучи растворенными в жидком кислороде, способны при известных условиях взрываться с огромной силой. Впервые взрыв кислородного аппарата произошел в 1908 г. вблизи Льежа (Бельгия), в дальнейшем катастрофы случались и в других местах. Взрывы прекратились, как только была налажена очистка кислорода, а иногда и воздуха от углеводородов. [c.168]

    На установках, оснащенных цеолитовыми блоками комплексной очистки воздуха от влаги и двуокиси углерода, ацетилен в жидком кислороде и кубовой жидкости не оп- [c.364]

    Получение бедного концентрата. Криптон и ксенон — наименее летучие компоненты воздуха. Поэтому они накапливаются в жидком кислороде, где суммарное содержание их достигает 5-10" % здесь же скапливаются и менее летучие примеси, проникающие в воздухоразделительный аппарат с поступающим воздухом через аппаратуру очистки — углеводороды, в частности, ацетилен и метан. [c.125]

    Особую опасность представляют процессы, в которых возможно присутствие нескольких нежелательных примесей. Например, безопасная эксплуатация установок низкотемпературного разделения воздуха возможна, если в нем отсутствуют примеси ацетилена, углеводородов, окислов азота, сероводорода, сероокиси углерода, продуктов разложения смазочных масел (например, перекисные соединения). Накопление этих примесей в конденсаторах и другой аппаратуре разделения воздуха приводит к взрывам. Наиболее опасной примесью в данном случае является ацетилен, который, частично растворяясь в жидком воздухе и находясь в избытке, выпадает в виде взрывоопасного твердого ацетилена. Очистка воздуха от опасных примесей достигается их адсорбцией на гранулированном силикагеле. Адсорбционная очистка воздуха используется на всех установках воздухоразделения, действующих на химических предприятиях. [c.53]

    Следует отмстить, что на воздухораздслнтельных установках принимают спецна.шные меры для предотвращения взрывов от накопления в жидком воздухе и п жидком кислороде горючих веществ, поступающих в аппаратуру с забираемым атмосферным воздухом. Этими опасными примесями являются прежде всего ацетилен, а также различные углеводороды, пары смазочных масел и оксиды азота, которые в том или ином количестве всегда имеются в атмосферном воздухе нефтеперерабатывающих предприятий. Практика показала, что удаление мест забора воздуха от мест, где возможно содержание вредных примесей, не дает ощутимых результатов, поэтому основными мерами защиты является адсорбционная очистка от примесей воздуха, непосредственно поступающего в аппарат, илп адсорбция примесей из жидкого воздуха нли кислорода, находящихся в аппарате. Адсорбенто.м обычно служит гранулированный силикагель. [c.241]

    Особое место в установках для разделения воздуха занимают адсорберы ацетилена, предназначенные для поглощения из жидкого воздуха ацетилена, накоиление которого может привести к взрыву воздухоразделительного аппарата. Применение правильных конструкций адсорберов, тщательное соблюдение правил нх эксплуатации имеет первостепенное значение для безаварийной работы установок. В случае значительного и постоянного загрязнения ацетиленом атмосферного воздуха, используемого в разделительном аппарате, рекомендуется применять аппараты каталитической очистки воздуха от ацетилена. В таких аппаратах ацетилен и масло, содержащиеся в воздухе, окисляются кислородом воздуха, превращаясь в двуокись углерода и водяные пары. Процесс окисления происходит на специальном катализаторе (марганцевая руда, обработанная небольшим количеством серебра) при температуре 150—180°С. Аппараты каталитического окисления ацетилена являются эффективным средством очистки воздуха. Преимуществом их перед адсорберами ацетилена является то, что ацетилен и масла удаляются из воздуха до поступления его в воздухоразделительный аппарат. Недостатком этого способа является усложнение эксплуатации установки и дополнительный расход энергии на подогрев воздуха, необходимый для проведения процесса окисления [30]. [c.168]


    Процесс фирмы Майн сейфти аплайенс . Этот процесс применяется главным образом для полного удаления небольших количеств ацетилена (0,1 —1,0-10 %) и других углеводородов из воздуха, поступающего на установки низкотемпературной ректификации воздуха. Полное удаление ацетилена из таких потоков имеет исключительно важное значение из-за низкой растворимости ацетилена в жидком кислороде. Вследствие накопления твердого ацетилена на поверхностях теплообмена в отдельных точках схемы могут достигаться концентрации, превышающие нижний предел взрываемости смеси действительно, именно этим явлением и были вызваны многочисленные взрывы на установках ректификации воздуха. В присутствии гопкалита (смесь 60% двуокиси марганца и 40% окиси меди) углеводороды при сравнительно низкой температуре полностью окисляются до двуокиси углерода и воды. На этом катализаторе протекает также окисление окисп углерода в двуокись и разложение озона. Для очистки влажных воздушных потоков особенно активны промотироваиные гопкалиты, содержащие сравнительно небольшое количество серебряных солей [58]. Промышленный гопкалит позволяет практически полностью окислить ацетилен при температуре всего 152—158 С. Однако для окисления других углеводородов требуются более высокие температуры, иногда достигающие 425° С. Степень нревращения некоторых углеводородов в присутствии промышленного гоп-калитового катализатора прп разных температурах показана на рис. 13.16 [59]. [c.346]

    Технологическая схема установки дана на рис. 4.12. Атмосферный воздух засасывается через фильтр /9 в I ступень компрессора 18 и сжимается последовательно в пяти ступенях, проходя по-<У10 каждой из них холодильники и масло-влагоотделители. Сжатый до давления 200 кгс/см (при пуске или получении жидкого кислорода и азота) или 100—ПО кгс/см (при получении газообразного кислорода или азота) воздух направляется в ожижитель 13, установленный в блоке разделения, где охлаждается отходящим -отбросным азотом до плюс 5 — плюс 10 °С. При этом содержащиеся в воздухе водяные пары конденсируются и собираются во влагоотделителе, установленном перед блоком очистки, а затем удаляются продувкой. Далее воздух поступает в один из адсорберов 21 блока очистки и осушки, где двуокись углерода, влага и ацетилен поглощаются цеолитом. Очищенный от этих примесей воздух затем вновь направляется в блок разделения. При получении жидких кислорода или азота поток воздуха разделяется на два один из них-(до 56%) направляется в поршневой детан- [c.168]

    Температуру воздуха перед турбодетандером поддерживают на таком уровне, чтобы температура воздуха после расширения была на 2—3 °С выше температуры его конденсации. Температура петлевого воздуха после предвымораживателя должна быть не ниже минус 120—125 °С, в этих условиях в аппарате не происходит выделения твердой СО . Для регулирования температуры добавляют холодный воздух к потоку детандерного воздуха, нагретого в вымораживателе. Уровень жидкого кислорода в основных конденсаторах поддерживают не ниже 170 см, иначе конденсаторы начинают работать в сухом режиме, при котором кислород полностью испаряется, а растворенный в нем ацетилен кристаллизуется на стенках трубок конденсатора. Выносной конденсатор всегда должен работать в мокром режиме, при котором часть жидкого кислорода, содержащего ацетилен, непрерывно стекает в аппаратуру для очистки. [c.140]

    Из всех примесбй воздуха наиболее опасным для воздухоразделительных установок считается ацетилен. Малая растворимость ацетилена в жидком кислороде приводит к тому, что уже при весьма небольших концентрациях ацетилена в жидком кислороде создаются благоприятные условия для образования взрывоопасных смесей. В то же время применяемые сейчас средства очистки позволяют при правильной их эксплуатации надежно защитить установки от попадания и накопления ацетилена. Ацетилен не является единственной взрывоопасной примесью воздуха. Взрывоопасны также смеси жидкого кислорода с другими углеводородами и сероуглеродом. [c.20]

    И других углеводородов из воздуха, поступающего на установки низкотемпературной ректификации воздуха Полное удаление ацетилена из таких потоков имеет исключительно важное значение из-за низкой растворимости ацетилена в жидком кислороде. Вследствие накопления твердого ацетилена на поверхностях теплообмена в отдельных точках схемы могут достигаться концентрации, превышающие нижний предел взрываемости смеси действительно, именно этим явлением и были вызваны многочисленные взрывы на установках ректификации воздуха. В присутствии гопкалита (смесь 60% двуокиси марганца и 40% окиси меди) углеводороды при сравнительно низкой температуре полностью окисляются до двуокиси углерода и воды. На этом катализаторе протекает также окисление окиси углерода в двуокись и разложение озона. Для очистки влаяшых воздушных потоков особенно активны промотированные гопкалиты, содержащие сравнительно небольшое количество серебряных солей [58]. Промышленный гонкалит позволяет практически полностью окислить ацетилен нри температуре всего 152—158°. Однако для окисления других углеводородов [c.353]


Смотреть страницы где упоминается термин Очистка жидкого воздуха от ацетилена: [c.241]    [c.33]    [c.154]    [c.135]   
Смотреть главы в:

Глубокое охлаждение Издание 3 Ч 2 -> Очистка жидкого воздуха от ацетилена

Глубокое охлаждение Часть 2 Изд.3 -> Очистка жидкого воздуха от ацетилена




ПОИСК





Смотрите так же термины и статьи:

Воздух жидкий



© 2025 chem21.info Реклама на сайте