Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ацетилен определение в воздухе

    Фотометрия пламени — вид эмиссионного спектрального анализа, в котором источниками возбул<дения спектров являются пламена различных видов ацетилен — воздух, ацетилен — кислород, пропан — воздух, пропан — кислород, водород — воздух и др. Вследствие невысокой температуры в пламенах излучают легко и среднеионизующиеся элементы щелочные и щелочноземельные металлы, галлий, индий, магний, марганец, кобальт, медь, серебро и ряд других, причем их число растет с увеличением температуры пламени. В наиболее холодных пламенах, таких как, например, пропан — воздух, светильный газ — воздух излучают только атомы щелочных и щелочноземельных металлов. Вследствие невысокой температуры спектры, излучае-МЕле пламенами, состоят из небольшого числа спектральных линий, главным образом резонансных, что позволяет выделять характеристическое излучение элементов при помощи светофильтров и использовать простые и имеющие невысокую стоимость спектральные приборы — пламенные фотометры. Кроме атомных спектральных линий в спектрах пламен присутствуют полосы ряда в основном двухатомных молекул и радикалов С2, СиС1, СаОН и др. Некоторые из них используют в аналитических целях. Так, в случае элементов, образующих термически устойчивые оксиды, которые практически не диссоциируют в пламенах с образованием свободных атомов, молекулярные спектры являются единственным источником аналитического сигнала. Практически не атомизируются в низкотемпературных пламенах оксиды скандия, титана, лантана и других элементов, ирлеющих относительно невысокие потенциалы ионизации. Наиболее часто фотометрию пламени применяют для определения щелочных и щелочноземельных металлов. [c.35]


    При определении натрия атомно-абсорбционным методом изучено влияние условий измерения и различных параметров на величину абсорбции и наклон градуировочных графиков [935]. Применяли спектрофотометр фирмы Перкин-Элмер (модель 303), пламена ацетилен—воздух и ацетилен—оксид азота(1). Предложена новая модель многоэлементного пламенного спектрометра с детектором-види-коном, оснащенным ЭВМ, Предусмотрены программы, позволяющие исключить наложения спектров мешающих элементов, корректировать фон, проводить коррекцию с помощью внутреннего стандарта, измерять аналитический сигнал по отношению к усредненному фону. Прибор используют для одновременного определения натрия, калия, лития и кальция [755]. [c.116]

    В практике атомно-абсорбционного анализа наибольшее применение получили два пламени воздушно-ацетиленовое и пламя оксида азота (I) с ацетиленом. Первый тип пламени успешно применяют для определения щелочных и щелочноземельных элементов, а также таких металлов, как хром, железо, кобальт, никель, магний, молибден, стронций, благородные металлы и др. Для некоторых металлов (хром, молибден, олово и др.) чувствительность определений может быть увеличена применением обогащенной смеси. К элементам, для определения которых практически бесполезно использовать воздушно-ацетиленовое пламя, относятся металлы с энергией связи металл — кислород выше 5 эВ (алюминий, тантал, титан, цирконий и др.). Пламя ацетилена с воздухом обладает высокой прозрачностью в области длин волн более 200 нм, слабой собственной эмиссией (особенно обедненное пламя) и обеспечивает высокую эффективность атомизации более чем 30-ти элементов. Частично ионизируются 0 нем только щелочные металлы (цезий 65%, рубидий 41 %, калий 30%, натрий 4 %, литий 1 %). [c.146]

Фиг. 91. Прибор для быстрого определения воздуха в ацетилене. Фиг. 91. Прибор для <a href="/info/214150">быстрого определения</a> воздуха в ацетилене.
    Для контроля удаления воздуха из генераторов и трубопроводов, когда не требуется большая точность определения, может быть применен описанный ниже упрош,енный способ определения воздуха в ацетилене. Для проведения этого определения применяется бюретка ,, показанная на фиг. 91. Бюретка 1 емкостью 25 мл имеет двухходовой кран 2 и запасной сосуд 3 для ацетона с отростком 4 для отбора проб газа. Поворотом крана 2 бюретку 1 соединяют с источником газа и продувают в течение 1 мин. При этом происходит испарение ацетона С внутренней поверхности бюретки. [c.273]


    По Энгелю [6.16], остаток газа после поглощения представляет собой воздух, содержащийся в анализируемом ацетилене. Однако это не соответствует действительности. Результаты проведенных нами сравнительных опытов по определению воздуха в ацетилене (в объемн. 7о) по ГОСТ 5457—60 и способу Энгеля приведены ниже  [c.294]

    Поправки для определения воздуха в ацетилене [c.296]

    После трех наполнений до 25 ат и опорожнений баллон был вновь наполнен ацетиленом, содержание воздуха в ацетилене составляло 0,8%. Пробы ацетилена для анализа отбирались из каждого вентиля ежедневно. Определение воздуха в ацетилене производилось методом приточной воды. Полученные результаты приведены на рис. 6.10. [c.301]

    В определенных условиях и при наличии источника воспламенения ацетилен способен к взрывному распаду в отсутствие кислорода. Эта характерная особенность ацетилена, в отличие от других горючих газов, например водорода, метана, которые образуют взрывчатые смеси только с кислородом и воздухом, делает его особо опасным и требует соблюдения специфических [c.35]

    Сущность работы. Определение основано на измерении интенсивности атомного поглощения цинка при 213,8 нм, распыленного в пламени газовой смеси ацетилен - воздух или пропан -бутан - воздух, обогащенной кислородом. Концентрацию цинка находят методом фадуировочного фафика. [c.210]

    ДЛЯ определения щелочных и щелочноземельных металлов, а также некоторых других элементов (1п, Т1, РЬ, Мп, Си и др.)- Возбуждение атомов щелочных металлов происходит при 1200—1400° С, такую температуру дает пламя смесей воздуха с пропаном, бутаном, светильным газом. Для возбуждения атомов щелочноземельных металлов необходима температура 2300°С (смесь воздуха с ацетиленом). [c.243]

    Показано, что гасящее влияние кислот на эмиссию натрия усиливается в ряду кислот лимонная, азотная, борная, серная, соляная и фосфорная [488]. По данным работы [713], муравьиная и уксусная кислоты повышают интенсивность испускания натрия, винная и лимонная кислоты — снижают. Объясняется это изменением поверхностного натяжения раствора и его влиянием на размер капель аэрозоля. В присутствии 100%-ной уксусной кислоты чувствительность повышается в 5—10 раз. При атомно-абсорбционном определении натрия в силикатах в пламени ацетилен—воздух борная кислота устраняет все влияния [620]. [c.123]

    Спектральные помехи возникают, когда в пламени присутствуют молекулярные частицы, имеющие широкие полосы поглощения, которые перекрываются с атомной линией поглощения определяемого элемеита. Так, папример, линия поглощения Ва 553,6 им проявляется практически в центре широкой полосы поглощения молекулы СаОН, которая расположена в интервале от 548,0—560,0 им. Естественно, следовало бы ожидать помехи со стороны Са нри определении Ва. Однако такая помеха легко устраняется, если в качестве окислителя использовать не воздух, а закись азота. Пламя ацетилен—закись азота имеет более высокую температуру, и молекула СаОН разлагается. [c.159]

    Так как при температурах выше 1000 С эти реакции целиком сдвинуты вправо, в равновесной смеси газов не могут одновременно присутствовать ацетилен и углекислота или водяной пар. Поэтому ацетилен, получающийся в определенных условиях при неполном горении метана в кислороде и воздухе, наряду с углекислотой и водяным паром, как и ацетилен, получающийся при термическом процессе, является промежуточным неустойчивым продуктом и его получение возможно только нри быстрой закалке продуктов реакции. [c.115]

    Описан метод определения натрия, позволяюш,ий учесть мешающее влияние различных факторов на интенсивность линий натрия и контрольную пробу [12381. Для этой цели применяют трехканальный спектрофотометр и два распылителя — обычный и V-образный. Натрий определяют по эмиссии в пламени воздух—оксид азота 1) — ацетилен. Для подавления ионизации используют соли калия, раствор инжектируют через обычный распылитель током оксида азота(1). Воздух вводят через V-образный распылитель. Через ветви этого распылителя вводят растворы анализируемой и контрольной проб. Концентрацию натрия определяют с помощью программ по фототокам растворов, содержащих натрий и контрольную иробу. [c.116]

    Ионизация атомов натрия в пламени. Константа ионизации, рассчитанная по методу Саха при 1270 К, равна 6,0-10" атм. Отмечается, что в пламени ацетилен—воздух изменение степени ионизации заметно для растворов с концентрацией натрия СЮ" М, поэтому при определении натрия в высокотемпературных пламенах предложен метод смещения равновесия ионизации при введении в раствор солей щелочных металлов с более низкими потенциалами Ионизации [397]. [c.118]

    По вопросу влияния ионизационных помех в пламени на определение натрия единого мнения нет. В ряде работ отмечено взаимное влияние натрия и калия, причиной которого является смещение равновесия ионизации [419, 938, 991]. Показано, что при введении сульфата калия в качестве буфера в растворы хлорида натрия в пламенах ацетилен—воздух и пропан—воздух повышается интенсивность излучения натрия (использован пламенный фотометр фирмы К. Цейсс [326]. Предложено уравнение, учитывающее влияние ионизации при определении интенсивности излучения натрия в зависимости от концентрации натрия [1244]. Отмечено взаимное влияние калия и натрия в пламени аммиак—воздух и аммиак—кислород [419]. Рассмотрены преимущества низкотемпературного пламени водород—воздух в снижении ионизационных помех [1107]. Отмечено, что литий стабилизирует равновесие ионизации атомов натрия и что интенсивность излучения натрия не изменяется в присутствии элементов с низким потенциалом ионизации [324]. В то же время авторы работы пришли к выводу, что при определении натрия в пламени ацетилен—воздух сульфат калия не является буферным раствором. Расчетным методом показано, что при концентрации натрия в растворе 10 —10 М равновесие ионизации натрия в пламени смещено влево [401]. Логарифм константы ионизации равен —11,38 и —9,0 в пламенах светильный газ—воздух (1970 К) и ацетилен—воздух (2360 К) соответственно. [c.119]


    Равновесие ионизации натрия в пламенах более детально рассмотрено в обзорных работах [583, 789], где сопоставляются расчетные и экспериментальные данные по оценке степени ионизации натрия за 10 лет. Имеются сведения, что при определении степени атомизации натрия методом интегрального поглощения в присутствии избытка хлорида цезия величина Р изменяется от 0,5 до 1,0, что свидетельствует о заметной ионизации натрия при введении 10 М раствора соли натрия в пламя горелки ацетилен—воздух. В то же время многие исследователи отрицают возможность образования ионов натрия в пламенах. Видимо, различие мнений о механизме ионизации натрия в пламенах связано с разными экспериментальными условиями и неполной информацией 6 механизме процессов в пламенах. [c.119]

    Показано, что в пламени воздух—пропан—бутан чувствительность определения натрия повышается в 10 раз при подогреве распылительной камеры до 200 С [167]. Сопоставлены пределы обнаружения натрия методом эмиссионной и абсорбционной спектрометрии при использовании одной и той же аппаратуры [678]. Приведены пределы обнаружения натрия при испарении его солей с зонда [412, 413]. В пламени оксид азота(1)—ацетилен предел обнаружения натрия составляет 1-10 мкг/мл по Зх-критерию и 10 г при определении его эмиссионным методом. При использовании графитовой печи НОА-72 предел обнаружения натрия составил 10 г [660]. Применение графитовой кюветы и лазера на красителе родамин 6Ж снижает предел обнаружения натрия до 3-10 ат/см [933]. [c.120]

    При изучении влияния платины на поглощение натрия установлено их соотношение, которое соответствует максимальному взаимному влиянию [280]. При определении натрия в соединениях вольфрама и молибдена [300, 468, 798, 1013] отмечается влияние фонового излучения вольфрама [798], а также возможное образование молибда-тов и вольфраматов натрия, термически устойчивых в пламени, что приводит к снижению эмиссии натрия. Исследования проводили в различных пламенах светильный газ—воздух, светильный газ— воздух—кислород, воздух—ацетилен, водород—кислород [468]. [c.122]

    Большое значение имеет конструкция распылителя и горелки. Так, при применении распылителей с камерами распыления и комбинированных горелок-распылителей механизм влияния органических растворителей различен. Отмечена неоднозначность результатов влияния органических растворителей на интенсивность спектральных линий натрия, полученных разными авторами в различных экспериментальных условиях [248]. Использована пламенно-фотометрическая установка на основе спектрографа ИСП-51. Сравнивалось влияние метанола, этанола, пропанола, бутанола, муравьиной и уксусной кислот, диоксана, ацетилацетона и водных растворов на эмиссию щелочных элементов в пламени ацетилен—воздух. Отмечено полное соответствие между увеличением скорости распыления раствора, уменьшением вязкости в ряду спиртов и ростом интенсивности спектральных линий натрия. Для кислот изменение интенсивности коррелирует с уменьшением вязкости и увеличением поверхностного натяжения. Все органические растворители практически не изменяют скорость распыления. Сделано предположение, что влияние органических растворителей связано с изменением диаметра капли аэрозоля. Из общей схемы выпадает ацетилацетон. Спирты в зависимости от их концентрации в растворе позволяют повысить чувствительность определения щелочных металлов (натрия) в 4—12 раз. [c.125]

    При определении натрия в пламени пропан—воздух заметно влияние метанола, этанола, пропанола, зтиленгликоля и глицерина на интенсивность спектральных линий натрия [487]. Для первых трех спиртов изменение интенсивности коррелирует с изменением вязкости раствора. Сделано обоснованное предположение об изменении условий распыления растворов. Для пламени ацетилен—воздух изучено влияние метанола, этанола, глицерина и неорганических кислот на эмиссию и абсорбцию натрия [409]. [c.126]

    Определение натрия в пентаоксиде ванадия [2711. Метод применен для определения 2-10 —2 10 % натрия (калия, кальция) в пентаоксиде ванадия предел обнаружения натрия составляет 0,05 мкг/мл, относительная погрешность определения 10—12%. Спектр возбуждают в пламени воздух—ацетилен и регистрируют спектрофотометром на основе спектрографа ИСП-51 с фотоэлектрической приставкой ФЭП-1. Используют резонансную линию натрия 588,995-589,593 нм. [c.130]

    Для анализа силикатов используют пламенный фотометр фирмы К. Цейсс (модель III) [483], Натрий определяют в пламени ацетилен— воздух. Изучено влияние кальция на эмиссию натрия и установлено, что при содержании кальция 4% необходимо вводить поправку или вводить кальций в стандартные растворы. Изучено также взаимное влияние натрия и калия. Метод перевода силикатов в раствор стандартен, однако не рекомендуется оставлять растворы надолго. Приводятся величины факторов избирательности при определении натрия в минералах эмиссионным методом [402]. [c.156]

    Предложен способ разложения силикатов, заключающийся в обработке образцов смесью кислот в герметически закрытых сосудах с последующим введением борной кислоты для связывания фторид-иона и определением всех компонентов силикатной породы атомноабсорбционным методом. Так, например, используют сосуд из фторопласта диаметром 30 мм и высотой 40 мм в виде тигля, запрессованного в железный корпус [620]. Разложение пробы проводят при полной герметизации 50 мг образца обрабатывают 0,5 мл воды, прибавляют 3 мл HF и нагревают в течение 30—40 мин при температуре 110° С. Натрий определяют в пламени ацетилен—воздух. [c.157]

    Детонация газовых смесей может происходить только при определенном минимально необходимом начальном давлении и опре-, деленных, концентрациях горючего вещества в 1 воздухе (иди кислороде). При детонации также Существуют верхний и нижний концентрационные пределы воспламенения (например, для смеси водород f кислород 27- 35% для смеси ацетилен 4-воздух 8,5—15% и т. д.). С увеличением диаметра тру4 М 10 до 150 мм скорость движения пламени увеличивается дальнейшее увеличение диаметра труб не влияет на изменение с,корости. При уменьшении диаметра труб скорость движения пламени уменьшается-вплоть до прекращения горения при достижении определенной для каждого газа величины диаметра трубы. [c.161]

    Конструкция генератора и условия его эксплуатации должны быть такими, чтобы воздух не мог проникать в генератор с загружаемым карбидом, и воздух сможет попадать в ацеишен только через воду, подаваемую в генератор. Количество примесей, содержап1 ихся в ацетилене, определенно превышает величину, рассчитанную на основании растворимости воздуха в воде. Это, вероятно, обусловлено определенным увлечением воздуха из системы питания генератора водой. Недавно была найдена возможность проводить генерацию, ацетилена при более низком содержании инертных примесей в газе, чем показано в табл. IV.3, путем сведения к минимуму этого источника загрязнения. [c.304]

    Ацетилен в воздухе можно определять адсорбционно-колориметрическим методом. Адсорбируют его, активированным углем или силикагелем при температуре жидкого Воздуха. Применение в качестве адсорбента активированного угля недопустимо для определения ацетилена в жидком кислороде -из-за возможности образова ния взрывоопасного оксиликвита. После адсорбции/выделяют ацетилен из адсорбента (десорбция) и поглощают его реактивом Илосвая, с которым ацетилен образует окрашенный в красный цвет раствор ац иленида.меди  [c.18]

    Определение воздуха в ацетилене ир01 зводили г ГОСТ 5457—60 на ацетилен растворенный технический. Точность определения -1-0,1%. [c.152]

    Избирательная гидрогенизация ацетилена была использована в промышленности в двух направлениях. Во-первых, для превращения ацетилена, содержащегося в некоторых определенных крекинг-газах, в этилен. Этот процесс удобен тем, что газы содержат водород в количестве, достаточном для гидрогеиизации ацетилена. Во-вторых, для превращения более или менее чистого ацетилена в этилен. Последнее применение представляет особый интерес для стран, имеющих недостаточное количество природного газа. В Германии во время второй мировой войны ацетилен превращался в этилен в больших масштабах с выходом этилена около 90%, катализатором служил палладий на силикагеле. В течение 8 месяцев температура катализатора в процессе постеиенно повышалась от 200 до 300 , а затем катализатор регенерировался без выгрузки из реактора (на месте) смесью пара и воздуха при 600°. Катализатор выдерживает три регенерации [112]. [c.240]

    Перед испытанием готовят эталонные растворы органических соединений ванадия, молибдена, кобальта и никеля в топливе и вольфрама в воде в интервале концентраций этих металлов 1 Ю" - 10 % (масс.). Пробу топлива тщательно перемешивают и сжигают в количестве 7-8 мл/мин в пламенах воздух - ацетилен или оксид азота (N2 О)-ацетилен в режиме, указанном в табл. 18 (для спектрофотометра 1Ь-453). Для определения вольфрама сжигают водный раствор сухого остатка испьггуемого топлива. Перед растворением водой остаток обрабатывают раствором гидроксида натрия. [c.146]

    Концентрация свободных атомов элемента зависит не только от его концентрации в анализируемом растворе, но и от степени диссоциации молекул, в виде которых он вводится в пламя или же образующихся в результате химических реакций, протекающих в плазме. Вследствие этого при атомно-абсорбционном определении элементов, дающих термически устойчивые оксиды, например алюминия, кремния, ниобия, циркония и других, требуются высокотемпературные пламена, например ацетилен — оксид азота (N20). Тем не менее в низкотемпературных пламенах (пламя пропан — воздух) атомизируется большинство металлов, не излучающих в этих условиях вследствие высоких потенциалов возбуждения их резонансных линий медь, свинец, кадмий,, серебро и др. Всего методом атомной абсорбции определяют более 70 различных элементов в веществах различной природы металлах, сплавах, горных породах и рудах, технических материалах, нефтепродуктах, особо чистых веществах и др. Наибольшее применение метод находит при определении примесей и микропримесей, однако его используют и для определения высоких концентраций элементов в различных объектах. К недостаткам атомно-абсорбционной спектрофотометрни следует отнести высокую стоимость приборов, одноэлемеитность и сложность оборудования. [c.49]

    Для превращения растворов анализируемых веществ в атомный пар чаще всего применяют щелевые горелки длиной 5-10 см. Они дово п.но однотипны по конструкции и легко заменяются Большинство приборов рассчитаны на использование в качестве окислителей воздуха, кислорода и закиси азота, а в качестве топлива - гфопана, ацетилена и водорода Наибольшее распространение получило воздушно-ацетиленовое пламя (2200-2400 °С), которое позволяет определять многие высокотоксичные металлы (РЬ, Сс1, Zn, Си, Сг и др.). Для определения элементов с более высокой температурой парообразования (А1, Ве, Мо и др.) широкое признание получила смесь закись азота-ацетилен (3100-3200 С), поскольку она более безопасна в работе, чем смеси с кислородом. Для обнаружения мышьяка и селена в виде гидридов требуется восстановительное гшамя, образующееся при сжигании водорода в смеси аргон-воздух. [c.247]

    На основе такого механизма реакции можно легко объяснить эксиерп-ментальные данные Халаса и Шнейдера (1961), в соответствии с которыми чувствительность детектора сильно повышается при введении в корпус детектора чистого кислорода вместо воздуха. Также легко можно объяснить экспериментальное правило, согласно которому сигнал детектора на углеводороды с одинаковым углеродным числом тем больше, чем менее насыщен углеводород. Бензол или ацетилен, например, содержат уже готовые СН-радикалы, в то время как в случае насыщенных углеводородов эти радикалы могут образоваться только путем дегидрирования более богатых водородом исходных радикалов. Наконец, объясняется экспериментально установленный факт, что показания детектора для гомологических рядов органических соединений при одинаковом числе молей пропорциональны углеродному числу в молекуле и одинаковы при равных массах различных соединений в пределах гомологического ряда (см. гл. VIII, разд. 5). Эти количественные закономерности справедливы только при работе детектора в области линейного динамического диапазона, т. е. когда концентрация ионов в пламени не превышает какого-то определенного значения. [c.130]

    Для пламен светильный газ—воздух и ацетилен—воздух изучена зависимость логарифма интенсивности от логарифма концентрации щелочного элемента [401]. Угол наклона градуировочных графиков согласуется с теоретически рассчитанным, зависящим от абсорбционного параметра а а равно отношению лоренцовской и допплеровской полуширин спектральных линий). Отмечено, что в воздушно-пропа-новом пламени влияние калия и кальция на определение натрия соответствует уровню случайных ошибок измерений [1133]. [c.114]

    Рекомендуется использовать пламя ацетилен—воздух, в котором интенсивность линий натрия не изменяется в присутствии элементов с низким потенциалом ионизации [324]. Зона максимального свечения натрия в этом пламени не зависит от введения раствора сульфата натрия в качестве буферного с концентрацией 2,5 мг/мл. Оптимальная зона для натрия отличается от зон для других щелочных элементов. Это объясняют изменением степени атомизации натрия и образованием гидроксидов в пламени. В работеиспользован спектрофотометр на основе спектрографа ИСП-51 с фотоэлектрической приставкой ФЭП-1. Применение низкотемпературного пламени водород— воздух приводит к уменьшению ионизационных помех и ослаблению фона по сравнению с высокотемпературным пламенем ацетилен— воздух и ацетилен—оксид азота(1) [1107]. В качестве буфера предложены соли лития. Рассматривается [419] аммиачно-кислородное пламя с температурой 1720° (1993 К). Отмечается, что кальций (до 500 мкг/мл) не мешает определению натрия интенсивность линии натрия возрастает в присутствии калия, что предлагается учитывать расчетным способом. Использование резонансных линий натрия (и других щелочных элементов) приводит в искривлению градуировочного графика за счет самоноглощения. При определении натрия в пла- [c.114]

    Предлагается определять натрий в пламени кислород—воздух — ацетилен при импульсном испарении его соли с графитового микрозонда [413]. Время импульса -<1 с, чувствительность -<10 ° г. Используется пламенно-фотометрическая установка на основе монохроматора ДФС-12. Предлагается [728] эмиссионный метод определения натрия в диффузионном пламени азот—водород при использовании графитовой нити. Применяют адаптор пламени — медную трубку. Изучение ее полости проецируется на цель монохроматора 8Р-900П. [c.117]

    Указано, что натрий (медь, серебро) можно рассматривать как полностью атомизированный стандартный элемент [583]. Методом интегральной абсорбции вычислено, что натрий полностью атомизи-рован в обогащенных пламенах ацетилен—оксид азота(1) (Т = = 2950 К), водород—оксид азота(1) Т = 2900 К), ацетилен—воздух Т = 2450 К) и водород—воздух Т = 2000 К). Такое же заключение сделано для натрия при его определении в пламени ацетилен-оксид азота(1) с отношением окислителя к горючему, равным 1,95—2,8. Вычисления показали, что при более низком отношении образуется карбид натрия, при более высоком — моногидроксид и монооксид. Образование молекул Nag исключено. [c.118]

    Отмечается [713], что при пламенно-фотометрическом определении натрия с помощью фильтрового фотометра К. Цейсс (модель П1) этанол снижает интенсивность излучения натрия за счет увеличения самоноглощения, изменения температуры пламени и кинетики процессов, несмотря на увеличение эффективности распыления раствора. При изучении влияния муравьиной, уксусной, винной и лимонной кислот на определение натрия с помощью спектрофотометра на основе спектрографа ИСП-51 установлено повышение чувствительности определения натрия в 5—10 раз в присутствии 100%-ной уксусной кислоты и в 1,5—2 раза для 2 М раствора кислоты [713]. В несколько меньшей степени влияет муравьиная кислота. Винная и лимонная кислоты снижают интенсивность излучения натрия. Основное значение придается роли поверхностного натяжения раствора. Отмечается, что уксусная кислота увеличивает эмиссию и абсорбцию натрия за счет уменьшения диаметра частиц аэрозоля [497]. Изучено влияние метанола, этанола, бутанола и уксусной кислоты на распределение свободных атомов в пламени ацетилен—воздух и на температуру [559]. Для этой цели применяли пламенно-фотометрическую установку на основе спектрографа ИСП-51, комбинированную горелку-распылитель. При концентрации органического растворителя 1 М температура пламени повышается на 100° С. Интенсивность линий натрия в присутствии органических растворителей максимальна в более высокой зоне пламени по сравнению с водным раствором. Общий объем пламени возрастает. Аналогичные результаты получены в работе [397]. [c.126]


Смотреть страницы где упоминается термин Ацетилен определение в воздухе: [c.115]    [c.648]    [c.294]    [c.113]    [c.39]    [c.150]    [c.723]    [c.583]    [c.44]    [c.131]   
Судебная химия и открытие профессиональных ядов (1939) -- [ c.269 ]




ПОИСК





Смотрите так же термины и статьи:

Быстрый способ определения содержания воздуха в ацетилене

Определение ацетилена в воздухе с помощью импрегнированной хроматографической бумаги

Определение ацетилена и метилацетилена в воздухе методом спектрофотометрии

Определение в ацетилене воздуха (кислорода) и других малорастворимых в воде газов

Определение содержания ацетилена в воздухе карбидной и цианамидной мельниц, элеватора и бункера карбидной шихты

Определение содержания ацетилена в воздухе помещения дробления карбида кальция

Определение щелочноземельных и щелочных металлов в пламени воздух—ацетилен



© 2025 chem21.info Реклама на сайте