Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теплопроводность. Теплота испарения

    Аддитивными методами можно рассчитывать как термодинамические величины (например, критические постоянные, мольную теплоемкость, энтальпию, энтропию, свободную энергию образования Гиббса, теплоту испарения, поверхностное натяжение, мольный объем, плотность и т. д.), так и молекулярные коэффициенты (коэффициенты вязкости, теплопроводности, диффузии). [c.84]


    Основными данными при решении задач технологического проектирования и оптимизации являются физико-химические и теплофизические данные. Они обычно представляются в трех формах — в виде таблиц, диаграмм и уравнений. Наиболее распространенным способом все-таки является аналитическое представление, допускающее непосредственный расчет соответствующих параметров при заданных входных условиях. В химической технологии, особенно для целей проектирования, к наиболее распространенным данным обычно относятся давление пара, теплота испарения, удельная теплоемкость, плотность, теплопроводность, вязкость, теплота реакций, данные по пожаробезопасности, поверхностное натяжение, фазовое равновесие (жидкость—пар, жидкость—жидкость, жидкость—жидкость—пар, жидкость—твердое вещество, твердое вещество—пар, растворимость), кинетика реакций химического превращения, полимеризации, растворимости и т. д. [c.177]

    Вода обеспечивает всасывание и механическое передвижение питательных веществ, продуктов обмена в организме, является прекрасным растворителем. Вода, участвуя в процессах набухания, осмоса и др., создает определенную величину онкотического давления в крови и тканях. Высокие теплоемкость, теплопроводность и удельная теплота испарения воды способствуют поддержанию температуры у теплокровных животных. Являясь высокополярным соединением, вода вызывает диссоциацию электролитов, принимает непосредственное участие в гидролитическом распаде веществ, реакциях гидратации и во многих других физико-химических процессах. Образование в организме воды как конечного продукта обмена в результате процессов биологического окисления сопровождается выделением большого количества энергии — около 57 ккал на 1 моль воды, что равно тепловому эффекту сгорания водорода  [c.22]

    МПа температура теплоносителя 615—494 К давление теплоносителя 0,95 МПа. Физические свойства кипящей среды плотность жидкости 549 кг/м плотность пара 37,2 кг/м теплота испарения 220 10 Дж/кг теплопроводность жидкости 0,1452 Вт/(м К) теплоемкость жидкости 2895 Дж/кг коэффициент поверхностного натяжения 0,0248 Н/м, [c.254]

    Решение. Теплофизические свойства рабочей жидкости в колонне при температуре /р = 92 °С плотность р. = 870 кг/м вязкость, ( = 2,35-10" Па-с поверхностное натяжение ст = = 21-10 Н/м удельная теплоемкость = 1,9-10 Дж/(кг-К) теплопроводность = 0,125 Вт/(м-К) удельная теплота испарения жидкости г = 4,2-10 Дж/кг. [c.280]


    На скорость испарения нефтепродуктов оказывают влияние давление насыщенных паров, фракционный состав и средняя температура кипения, коэффициент диффузии, теплоемкость, теплопроводность, теплота испарения, поверхностное натяжение. Косвенное влияние оказывают вязкость, плотность и другие свойства нефтепродуктов. [c.27]

    При использовании указанных выше формул для расчета скорости нспа рения топлив важным является определение теплофизических констант. Теплоту испарения у, теплоемкость жидкой фазы Ст, давление насыщенного пара Р, следует брать при температуре поверхности капли Тя, коэффициенты диффузии Da и температуропроводности а, кинематическую вязкость V и теплоемкость паров ср.а —при температуре пограничного слоя Гт коэффициеп теплопроводности среды — при температуре воздуха Гв. При высокотемп >а-туриом испарении (7 в>7, ) обычно используют уравнение (3 9в), при Гн Г, применяют формулу (3.29а). Если давление насыщенных паров (Р ) мало по сравнению с давлением окружающей среды (Р), можно пользовать ся уравнением (3.19), [c.109]

    ТЕПЛОПРОВОДНОСТЬ. ТЕПЛОТА ИСПАРЕНИЯ [c.18]

    Мазуты — горючие жидкости, т. е. остаточный продукт после отгона из нефти светлых топливных фракций (бензина, лигроина, керосина, дизельного топлива). Температура начала кипения мазутов около 350 С, плотность 890—995 кг/м теплота сгорания 42000—44000 кДж/кг, теплота испарения 160—210 кДж/кг, теплопроводность 1,5—1,6 Дж/(см-с-°С), элементарный состав — 83,5—88,5% углерода и 10,5—12,5% водорода. [c.23]

    Примечание, — начальная производительность аппарата — начальная концентрация раствора — конечная концентрация раствора кип.н температура кипения при начальной концентрации ип. к температура кипения при конечной концентрации допустимое время пребывания раствора в зоне нагрева р ( , Ср, — плотность, удельная теплоемкость, теплопроводность и вязкость жидкости соответственно —теплота испарения. [c.218]

    Из всех углеводородов нормальные алканы характеризуются наибольшей теплопроводностью (рис. 14). При близкой молекулярной массе теплота испарения алканов будет меньше теплоты испарения углеводородов иного строения в аналогичных условиях. Однако разница эта мала и составляет 40—60 кДж/кг  [c.188]

    X — коэффициент теплопроводности жидкости в вт/(м-град) а — поверхностное натяжение в н/м р — п.ютность жидкости в кг/м д— плотность теплового потока в вт/м г — теплота испарения в дж/кг  [c.455]

    X — координационное число X — теплота сублимации, теплота испарения X — коэффициент теплопроводности [c.305]

    Решением системы дифференциальных уравнений найдены радиальные и тангенциальные компоненты скорости движения испаряющихся капель и их радиаль юго перемещения при известных внешних условиях скорость воздуха (газа) на входе камеры Овх, начальный диаметр капли dкo параметры газа-п-плоносителя (гемпература ( , плотность Рв, теплопроводность вязкость и жидкости (теплота испарения г, плотность р , температура поверхности С ). Дополнительным условием при решении системы уравнений была зависимость = 1( ), полученная при а.зродинамических исследованиях. Эта зависимость имеет вид  [c.178]

    Т—хУ, У = у —х — коэффициент теплопроводности, кВт/(м-К) К — скрытая теплота испарения жидкости, кДж/м Ср ж — удельная теплоемкость, кДж/(кг К) — выражено в м /с. [c.204]

    Теплота испарения. Также как теплопроводность и теплоемкость, оказывает косвенное влияние на скорость испарения топлив. При значительной теплоте парообразования температура топлива заметно понижается и скорость испарения уменьшается. Теплота испарения зависит от давления и для углеводородов и нефтепродуктов уменьшается с увеличением молекулярной массы и температуры кипения (табл. 11). При прочих равных условиях теплота испарения уменьшается при переходе от непредельных углеводородов и аренов к цикланам и алканам. Повышенная теплота испарения непредельных и аренов объясняется их ассоциацией. Разность [c.36]

    Здесь к, Ср, Г и Уо — теплопроводность, теплоемкость при постоянном давлении, температура и массовая доля окислителя в газе Т1 — температура жидкости, Ь — теплота испарения единицы массы, Qo — тепловой эффект реакции в газовой фазе, в расчете на единицу израсходованной массы окислителя. Если принять, что вещество вступает в реакцию сразу же после испарения, то оправданным является предположение о постоянстве давления, температуры и состава газа. Следовательно, в формуле (66) переменной является только величина <г>, поэтому эта формула может быть записана в виде [c.359]

    Сублимация водяного пара из чистых кристаллов льда в эвтектической смеси происходит тогда, когда парциальное давление водяного пара замороженной поверхности больше, чем атмосферное давление у поверхности. Скорость сублимации кристалла льда является лишь функцией температуры. В табл. 12.3 показано, как эта скорость изменяется в диапазоне температур 173—273 К- Следует помнить, что во время лиофильной сушки образец может хорошо охладиться при сопутствующем уменьшении скорости сублимации льда из-за отвода скрытой теплоты испарения. Однако обычно достаточно теплоты за счет лучеиспускания и теплопроводности от оборудования и окружающей среды, уравновешивающих эффекты охлаждения при сублимации воды. [c.296]


    Таким образом, транспорт теплоты при пузырчатом кипении состоит из переноса теплоты от стенки к жидкости, а затем жидкостью теплота передается внутренней поверхности пузырьков в виде теплоты испарения. Передача теплоты от стенки непосредственно к пузырьку ничтожно мала, так как очень мала поверхность касания пузырьков со стенкой, к тому же низка теплопроводность пара. Для того чтобы теплота от жидкости передавалась пузырькам пара, жидкость должна иметь температуру несколько выше температуры пара. Поэтому при кипении жидкость несколько перегрета относительно температуры насыщенного нара над поверхностью кипящей жидкости. [c.291]

    Изменение указанных энергетпч. уровней при изотопном замещении, в свою очередь, вызывает изменение термодинамич. свойств, таких, как теплоемкость, теплопроводность, теплоты испарения и плавления, теми-ры кипения и плавлепия, давление насыщенного пара и др. Так, напр., отношение давлений пара И. и Ьз составляет 2,448 ири —251,1° отношение давлений пара Н О и В О составляет 1,148 при 20° и 1,052 ири 100° соответствующее отношение для НаО в и Н. 018 составляет 1,009 при 23° и 1,003 при 100° для и К15Нз оно равно 1,0053 при —75,4° и [c.94]

    Изменение указанных энергетич. уровней при изотопном замехцении, в свою очередь, вызывает изменение термодинамич. свойств, таких, как теплоемкость, теплопроводность, теплоты испарения и плавления, те 1п-ры кипения и плавления, давление насыщенного пара и др. Так, наир., отношение давлений пара Нз и Ь., составляет 2,448 при —251,1° отношение давле-ний пара Н О и ВзО составляет 1,148 при 20° и 1,052 при 100° соответствующее отношение для Н2О1 и Н. 0>8 составляет 1,009 при 23° и 1,003 при 100° для К1 Нз и Nl5Hз оно равно 1,0053 при —75,4° и 1,0025 при —33,7°. [c.94]

    Важнейшими показателями, характеризующими испаряемость топлив, являются давление насыщенных паров и фракционный состав. В связи с тем что процессы испарения, как правило, сопровождаются тепломассообменом, испаряемость зависит и от таких теплофизических и физических характеристик, как энтальпия, теплоемкость, теплопроводность, теплота парообразования, коэффициент диффузии, вязкость, поверхностное натяжение, фуггитивность. [c.99]

    Технологические расчеты иефтезаводской аппаратуры основываются на тепловых свойствах нефтей и нефтепродуктов. Основные из них — теплоемкость, скрытая теплота испарения, теплоты плавления и сублимации, теплопроводность и теплопроизводительность. [c.88]

    К важнейшим физико-химическим характеристикам холодильных агентов (табл. 2.1) [9,142] относят температуры кипения Тц п и плавления Тпл, теплоты испарения Хдсп и плавления Хцл- Эти характеристики позволяют оценить достигаемый предел температуры охлаждения и потребность в количестве используемого холодильного агента. Для полной оценки особенностей работы холодильной машины с применением данного холодильного агента требуются также данные об его вязкости, плотности, теплопроводности, химической активности, токсичности и стоимости. [c.49]

    Я—коэффициент теплопроводности жидкости в вт1 м-град) (Г—поверхностное натяжение в р—плотность жидкости в кг1м д — плотность теплового потока в вт/м г — теплота испарения в [c.455]

    Мазут — горючая жидкость, остаточный продукт после отгона из нефти топливных фракций (бензина, лигроина, керосина и дизельного топлива). Плотн. 890— 995 кг/л теплота сгорания 9100—10 000 ккал/кг теплота испарения 40—50 ккал/кг теплопроводность 0,35— 0,40 кал/(см сек град) элементарный состав углерод 83,5—88,5% и водород 10,5—12,5%. [c.150]

    Однако летучесть зависит не только от давления пара, но и от величины скрытой теплоты испарения, теплоемкости, теплопроводности и других свойств жидкости. Поэтому при сравнении "температур кипения и летучести разных растворителей оказывается, что эти величины изменяются в ряде случаев независимо друг от друга. Так, например, спирт (темп. кип. 78°) и вода (темп..кип. 100°) улетучиваются при комнатной температуре медленнее, чем толуол (темп. кип. 110°) температуры кипения монометилового эфира этиленгликоля ( метилцеллосольва ) и бутилацетата очень бЛизки друг к другу (около 125°), но летучесть последнего примерно в 3 раза больше. [c.13]

    Весьма перспективно для химической технологии теплообмен ное устройство, называемое теплопроводом. Оно пред ставляет собой полностью закрытую металлическую трубу с лю быми профилями сечения, футерованную каким-либо пористо капиллярным материалом (фитилем), например, шерстяной тканью, стекловолокном, сетками, пористыми металлами, полимерами, керамикой и т. п. В полость трубы подается теплоноситель в количестве, достаточном для полной пропитки фитиля. Температура кипения теплоносителя должна обеспечивать отвод тепла (путем испарения) из охлаждаемого рабочего пространства химического реактора или другого аппарата интервал зон температуры — от какой угодно низкой до 2000 °С. В качестве теплоносителя используют металлы (Сз, К, На, Ы, РЬ, А и др.), высоко кипящие органические жидкости, расплавы солей, воду, аммиак, жидкий азот и др.). Предпочтительны жидкости с высокой скрытой теплотой испарения, большим поверхностным натяжением, низкими плотностью и вязкостью. Трубка одной своей частью располагается в зоне отвода тепла, а остальной частью — в зоне конденсации паров. Пары теплоносителя, образовавшиеся в первой зоне, конденсируются во второй зоне, а конденсат возвращается в первую зону под действием капиллярных сил фитиля. Благодаря большому количеству центров парообразования резко падает перегрев жидкости при ее кипении и значительно возрастает коэффициент теплоотдачи при испарении (в 5—10 раз). Особенностью теплопровода является очень высокая эффективная теплопроводность вдоль потока пара (на 3—4 порядка больше, чем у серебра, меди и алю.миния), что обусловлено низким температурным градиентом вдоль трубы. Мощность теплопровода определяется капиллярным давлением, компенсирующим потери напора парового и жидкостного потоков. [c.336]

    К хладоагентам предъявляют много разнообразных требований. Так, они должны быть безвредны для человека, химически неагрессивны для металлов, инертны к смазочным маслам, негорючи и взрывобезопасны, низковязки, доступны и дешевы. Кроме того, хладоагенты должны обладать умеренными давлениями при требуемых температурах испарения и конденсации, малым удельным объемом паров и большой скрытой теплотой испарения, невысокой теплоемкостью в жидком состоянии, высокими коэффициентами теплопроводности и теплоотдачи. Отсутствие веш,еств, удовлетворяюш,их всем перечисленным требованиям, обусловило появление большого ряда хладоагентов и необходимость выбора наиболее подходящего в каждом конкретном случае. [c.734]


Смотреть страницы где упоминается термин Теплопроводность. Теплота испарения: [c.200]    [c.391]    [c.577]    [c.397]    [c.397]    [c.186]    [c.200]    [c.246]    [c.311]    [c.396]    [c.421]    [c.68]    [c.104]    [c.16]    [c.97]   
Смотреть главы в:

Инженерный справочник по технологии неорганических веществ Графики и номограммы Издание 2 -> Теплопроводность. Теплота испарения




ПОИСК





Смотрите так же термины и статьи:

Теплота испарения



© 2024 chem21.info Реклама на сайте