Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Технеций, палладий

    Заполнение 4/ -оболочки оказывает весьма существенное влияние на строение электронных оболочек, атомные радиусы и физико-химические свойства металлов, следующих за лантаноидами (гафний, тантал, рений, вольфрам и т. д.), т. е. лантаноидное сжатие проявляется и за лантаноидами. Действительно, оно приводит, например, к тому, что металлический и ионный радиусы, возрастающие от титана к цирконию, от ванадия к ниобию и от хрома к молибдену, почти не изменяются при переходе к гафнию, танталу, вольфраму. Точно так же почти не увеличиваются металлические радиусы и ионные радиусы, отвечающие высшим валентным состояниям, при переходе от элементов ряда технеций—палладий к их аналогам рению—платине соответственно. Именно лантаноидное сжатие, происходящее в результате заполнения 4/ -оболочки, приводит к сближению свойств 5d- и 4с -переходных металлов, резко отличающихся по свойствам от более легких Зй-переходных металлов. Оно проявляется и на теплотах образования ионных соединений этих металлов и других химических характеристиках (см. главу II). Лантаноидное сжатие, а также заполнение 5й -оболочки, заканчивающееся у платины—золота, приводит к дополнительному сжатию внешних оболочек у последующих элементов ряда золото—радон, что отражается на возрастании ионизационных потенциалов последующих элементов. Вследствие этого потенциалы ионизации франция, радия, актиния оказываются соответственно выше потенциалов ионизации цезия, бария и лантана (см. рис. 6). В результате этого первые более тяжелые элементы оказываются менее электроположительными, чем последние. Сжатие внешних оболочек вследствие заполнения внутренних Af - и 5й -оболочек приводит к повышению энергии связи внешних электронов актиноидов по сравнению с их аналогами — лантаноидами. На это указывают данные, правда, пока довольно ограниченные по их потенциалам ионизации и имеющиеся уже более подробные сведения об их атомных радиусах (см. главу III). [c.51]


    Мо 1 МОЛИБДЕН I 95,95 2 3 1 Тс 1 ТЕХНЕЦИЙ а [99] 2 44 1 Ru. 1 РУТЕНИИ 8 101.1 2 нн - РОДИЙ а 102.91 2 - 46 0 Рд ПАЛЛАДИЙ з 106.7 2 0 N м 1 к [c.151]

    Мо 95,9ч Молибден 43 Тс 98, 9062 Технеций 44 Ru 101,07 Рутений 45 Rh 102,9055 Родий 46 Pd 106,4 Палладий с [c.181]

    Для платиновых металлов в соединениях характерны практически все степени окисления от О до +8. При этом отмечается тенденция к понижению максимальных степеней окисления в горизонтальных рядах. В вертикальных диадах обычно наблюдается соответствие степеней окисления. Так, элементы первой диады (Ки—Оз) могут проявлять максимальную степень окисления +8 (даже в соединениях первого порядка), элементы второй диады (КЬ—1г) достигают степени окисления +6 (в комплексных соединениях), а палладий и платина имеют типичные степени окисления +2 и +4. Элементы первой диады напоминают по свойствам элементы УПВ-группы — технеций и рений (подобно тому как железо напоминает марганец). Элементы же последней диады проявляют определенное сходство с элементами 1В-группы— серебром и золотом (подобное сходству между никелем и медью). [c.417]

    Подгруппа хлоридов включает одновалентные медь, серебро, золото, таллий, двухвалентный свинец, выделяемые в виде плохо растворимых в воде хлоридов. Подгруппа сульфидов основного характера включает сульфиды меди (II), кадмия (II), олова (И), висмута (III). В этой же группе могут быть выделены технеции (IV), рутений (И1), родий (III), палладий (И). [c.31]

    Изменение удельного сопротивления -металлов в зависимости от 1 приведено на рис. 166. В четвертом периоде наблюдается резкий пик для марганца (рис. 166, а), в 5-м периоде этот пик для технеция значительно меньше, но появляется второй пик у палладия, который захватывает 5-электроны на уровень , заканчивая его, и имеет строение 4 4/°55°. При таком строении атома палладия в его кристаллической решетке концентрация электронов проводимости также мала. В 6-м периоде у рения пик удельного сопротивления еще меньше он соизмерим по величине с сопротивлением платины — аналога палладия. [c.326]

    VI РЬ. РУБИДИИ 2 5г 87.62 5 21в СТРОНЦИЙ г V I 88,9059 15 2 1 ИТТРИЙ 7 Хг 91,22 2 5 2,8 ЦИРКОНИЙ 2 NЬ, 1 92,9064 .3 ,18 НИОБИЙ г Мо -1 МОЛИБДЕН 2 Тс, 98,9062 ТЕХНЕЦИЙ 2 Яи РУТЕНИИ 2 кь РОДИЙ 2 ра 4d . ПАЛЛАДИЙ  [c.433]

    Металлохимия. Платиноиды образуют непрерывные твердые растворы между собой и с элементами триады железа, а также с элементами УПВ- и 1В-групп. Интересно отметить, что рутений и осмий образуют непрерывные твердые растворы с марганцем, технецием и рением, а палладий и платина — с медью, серебром и золотом, что подтверждает горизонтальную аналогию, отмеченную ранее в химических свойствах этих элементов. Палладий и платина непрерывно взаимно растворимы со всеми элементами триады железа (с железом в 7-модифи-кации), между собой и со всеми ближайшими соседями в горизонтальных триа-500 [c.500]


    Молибден Технеций Рутений Родий Палладий n [c.133]

    Селен. . Бром. . Криптон. Рубидий. Стронций Иттрий. Цирконий Ниобий. Молибден Технеций Рутений. Радий. . Палладий Серебро. Кадмий. Индий. . Олово Сурьма. Теллур. Йод. . . Ксенон. Цезий. . Барий. . Лантан. Церий. . Празеодим Неодим. Прометий Самарий. Европий. Гадолиний [c.279]

    Изменение удельного сопротивления -металлов в зависимости от Z приведено на рис. 151. В четвертом периоде наблюдается резкий пик для марганца (рис. 151,а), в пятом периоде этот пик для технеция значительно меньше, но появляется второй пик у палладия, который захватывает s-электроны на уровень , заканчивая его, и имеет строение 4 4/ 5s . При таком строении атома палладия в его кристаллической решетке концентрация электронов проводимости также мала. [c.310]

    РЬ рубидий 06.48 51 Стронций 87 63 39 у Иттрий 88.92 Zr "0 Цирконий 91,22 NЬ Ниобий 92 91 МО Молибден 96,96 Тс Технеций [98] Ри Рутений 101,01 Rh Родий 102,9 pd Палладий >05,7 [c.13]

    Нептуний Никель Нильсборий Ниобий Нобелий Олово Осмий Палладий Платина Плутоний Полоний Празеодим Прометий Протактиний Радий Радон Рений Родий Ртуть Рубидий Рутений Самарий Свинец Селен Сера Серебро Скандий Стронций Сурьма Таллий Тантал Теллур Тербий Технеций Титан Торий Тулий Углерод Уран Фермий Фосфор Франций Фтор Хлор Хром Цезий Церий Цинк Цирконий Эйнштейний Эрбий [c.410]

    Мо 42 Молибден 95,95 Тс 43 Технеций 99 Ни 44 Рутений 101,7 НЬ 45 Родий 102,91 Pd 46 Палладий 106,7  [c.7]

    Предлагаемый обзор продолжает серию выпусков Кристаллохимии В серии Итоги науки , имеющих общий заголовок Успехи кристаллохимии комплексных соединений и посвященных результатам структурных исследований координационных соединений переходных металлов. В выпуске IV были рассмотрены кристаллические структуры соединений хрома, марганца, железа и кобальта. Выпуск VI содержит аналогичный материал по соединениям молибдена и вольфрама, технеция и рения. Настоящий обзор является непосредственным продолжением Выпуска VI и содержит материал по кристаллическому строению соединений рутения и осмия, родия и иридия. Аналогичные данные по соединениям никеля были представлены в Выпуске V, данные по соединениям палладия и платины предполагается опубликовать в одном из следующих выпусков. [c.5]

    Марганец Молибден Натрий Ниобий Неодим Никель Осмий Фосфор (тверд.) Свинец Палладий Полоний Празеодим Платина Плутоний(жидк.) Радий Рубидий Рений Родий Рутений Сера Сурьма Скандий Селен Кремний Самарий Олово (жидкое) Стронций Тантал Тербий Технеций Теллур Торий Титан Таллий Тулий Уран Ванадий Вольфрам Иттрий Иттербий Цинк Цирконий [c.25]

    Способность 2г окисляться до четырехвалентного состояния (расстояние термов около 1 эв) гораздо больше, чем у титана (расстояние термов около 2 эв) также ясна лучшая, чем у ванадия (расстояние термов около 2 / эв), способность ниобия (расстояние термов около /дЭв) окисляться до высоких ступеней способность Ни к окислению сходна с железом. Технеций и кадмий, подобно марганцу и цинку, удерживают вторую ступень окисления палладий в отличие от никеля проявляет при образовании химических связей особенности, характерные для -электронов. [c.102]

    Исключение составляют идеальные газы, водород, галогены, халько-гены, азот, технеций, рений, рутений, родий, палладий, иридий, осьмий, платина, серебро, золото, медь и ртуть. [c.335]

    В мягких же условиях рений на керамических носителях обладает низкой активностью [271]. Так, циклогексен при 150° С практически не присоединяет водород, а при 250° С гидрирование идет уже с заметной скоростью. Бензол на том же катализаторе до 150° С не гидрируется, а при 200° С вместо гидрирования начинается частичное его разложение. Из нитробензола при 250° С образуются значительные количества анилина, а при 266° С начинается сильное разложение нитробензола и, как предполагают авторы, окисление им рения в высшие окислы. В работе [272] импульсным хроматографическим методом при 100—235° С была изучена каталитическая активность рения, технеция, рутения, платины и палладия, нанесенных на 5102 и на - -А120,, в реакции гидрирования бензола. Технеций и рений проявляли активность в указанном процессе, хотя скорость на них была ниже, чем на металлах платиновой группы Ки > > Тс Рс1 > Ке. Катализаторы, в которых носителем была 7-А12О3, оказались менее активными, чем металлы, нанесенные на 5102-Мелко раздробленный рений ведет реакцию гидрирования этилена при 150° С со степенью превращения до 80% [273], в то время как Ке на 8105,, полученный восстановлением перрената калия, в той же реакции обладает весьма нестабильной активностью [274]. [c.94]

    Извлечение родия, палладия и технеция из выдержаннмх сбросных растворов процесса переработки ядерного горючего в Ханфорде. [c.556]

    В работе [146] импульсным хроматографическим методом были определены удельные каталитические активности технеция, рения, рутения, платины, и палладия, нанесенных на силикагель и у-А120д (1% металла) в отношении реакции взаимодействия бензола с водородом в диапазоне температур 100—235° С. Поверхность нанесенных металлов измеряли методом селективной хемосорбции водорода при 20°, а также по размытию линий рентгеновского спектра. Чтобы определить число атомов водорода, поглощаемых одним атомом катализатора, предварительно измеряли адсорбцию на металлических порошках рутения, платины и рения с известной поверхностью. [c.341]


    Ряд активности для реакции гидрогенолиза Ru > Тс Re совпадает с рядом активности для реакции гидрирования. В исследованном температурном интервале платина и палладий неактивны в отношении гидрогенолиза. В работе [146] делается попытка связать активность металлов в отношении гидрогенолиза с их электронными свойствами порядок активности соответствует уменьшению числа неснаренных -электронов на атом от рутения (2,2) до технеция и рения (около 1) для палладия и платины эта величина составляет только 0,6. Гидрогенолиз, но-видимому, зависит от способности металлов образовывать связи металл—углерод, и эта способность падает с уменьшением числа неспаренных электронов. В связи с этим следует напомнить результаты, полученные Либерманом, Брагиным и Казанским [148], установившими уменьшение активности благородных металлов слева направо в VIII группе при гидрогенолизе циклогексана а также аналогичную корреляцию при гидрогенолизе этана [149]. В этих работах и в ряде других рутений был отмечен как наиболее активный а отношении гидрогенолиза. Нам хотелось бы еще раз подчеркнуть, что результаты, полученные в работе [146] импульсным методом, хорошо согласуются с данными других авторов, проводивших исследования в статических и проточных установках. [c.344]

    Мышьяк, германий и селен удаляются выпариванием с бромистоводородной кислотой селен и теллур осаждаются восстановлением SO2 или N2H4 НС1 рутений и технеций отгоняются при нагревании с H IO4 молибден экстрагируется диэтиловым эфиром из 6 н. раствора НС1 палладий осаждается диметилгли оксимом или солянокислым гидразином. [c.596]

    Было найдено, что при температурах 1200—1400° С из 5%-пого ф иссиум-уранового сплава в настыле концентрируется около 99% Ва и 8г. Цезий улетучивается почти количественно (по-видимому, в элементарном виде, поскольку при этих температурах СзоО совершенно нестабильна). Цирконий остается в расплаве. При температуре 1250°С улетучивается незначительная часть иода, но при 1400° С он удаляется количественно (по-видимому, не в виде свободного иода, а в виде иодидов). Технеций, рутений, родий и палладий остают- [c.270]

    Можно было бы полагать, что но аналогии в следующих вставных декадах максимум устойчивости комплексов с теми же лигандами совпадет с Ад и Аи-+. Однако проверить это предположение пока трудно как из-за практического отсутствия производных Аи(П), так и из-за недостатка данных по устойчивости производных Ag(II). Во второй вставной декаде сколько-нибудь устойчивые в водном растворе ионы в состоянии окисления +2 могут быть у молибдена, технеция, рутения, родия, палладия, серебра и кадмия. Из всех перечисленных элементов двухвалентное состояние наиболее характерно для палладия и кадмия. У этих двух элементов и можно ждать наибольшего разнообразия координированных лпгандов, а по устойчивости комплексы Р(1(П), несомненно, должны превосходить комплексы С(1(11). Относительно третьей вставной декады можно полагать, что, как правило, все входящие в нее элементы должны при прочих равных условпях давать более прочные комплексы, чем их вышестоящие аналоги. [c.595]

    Неон. . . . Нептуний. . Нпкель. . . Нпобпй. . . Нобелий. . Олово. . . Осмий. . . Палладий. . Платина. . Плутоний. , Полоний. . Празеодим. Прометий. . Протактиний Радий. . . Радон. , . Рений. . . Ролтг . . . Ртуть. ... Рубидий. . Рутений. . Самарий. . Свинец. . . Селен. . . Сера. ... Серебро. . Скандий. . Стропций. . Сурьма. . . Таллий. . . Тантал. . . Теллур. . . Тербий. . . Технеций. . Титан. . . Торий. . , Тулий. . . Углерод. . Уран. ... Фермий. . . Фосфор. . . Франций. . Фтор. . . . Хлор. ... Хром. ... Цезий. . . Церих . . . Цинк. ... Цирконий Эйнштейний Эрбий. . ,  [c.363]


Библиография для Технеций, палладий: [c.25]    [c.277]    [c.87]    [c.351]    [c.389]   
Смотреть страницы где упоминается термин Технеций, палладий: [c.308]    [c.125]    [c.239]    [c.426]    [c.313]    [c.496]    [c.340]    [c.340]    [c.496]    [c.128]    [c.358]    [c.14]    [c.217]    [c.227]    [c.255]   
Смотреть главы в:

Экстракция нейтральными органическими соединениями -> Технеций, палладий




ПОИСК





Смотрите так же термины и статьи:

Палладий

Палладий палладий

Технеций



© 2025 chem21.info Реклама на сайте