Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Эмиссионная спектроскопии методы

    Анализатор жидкости пламенно-фотометрический ПАЖ-1. Анализатор ПАЖ-1 предназначен для определения в растворах микроколичеств натрия, калия, лития и кальция методом пламенной эмиссионной спектроскопии. [c.193]

    Для экспериментального исследования строения молекулы помимо химических методов используют физические, при проведении которых не теряется химическая индивидуальность вещества. К физическим инструментальным методам относят эмиссионную спектроскопию, рентгенографию, электронографию, нейтронографию, магнитную спектроскопию [электронный парамагнитный резонанс (ЭПР) и ядерный магнитный резонанс (ЯМР)], мольную рефракцию, парахор и магнитную восприимчивость. Последние три экспериментально более простых метода основаны на установлении физических свойств — характеристик вещества, обладающих аддитивностью, т. е. подчиняющихся правилу сложения. Мольная рефракция и парахор равны сумме аналогичных величин для атомов или ионов, из которых составлена молекула (аддитивное свойство), и поправок (инкрементов) на кратные связи, циклы н места положения отдельных атомов и групп, характеризующих структурные особенности молекулы (конститутивное свойство). Многие физические методы исследования строения молекулы используют и как методы физико-химического анализа. [c.4]


    Аналитическая химия - наука о принципах и методах определения химического состава вещества и его структуры. Включает качественный и количественный анализы. Задача качественного анализа -обнаружение отдельных компонентов (элементов, ионов, соединений) анализируемого образца и идентификация соединений. Задача количественного анализа - определение количеств (концентрации или массы) компонентов. Некоторые современные методы анализа (например, эмиссионная спектроскопия) позволяют сразу получить информацию и о качественном составе образца и о количественном содержании отде компонентов. [c.10]

    Третья труппа. — оптические методы анализа, связанные с воздействием на вещество электромагнитного излучения различной длины волны X. Вещество может поглощать часть попадающей на него энергии (абсорбционные методы), рассеивать ее или возбуждаться под действием энергии и испускать излучение, вид и интенсивность которого зависят от природы анализируемого вещества и концентрации его компонентов (эмиссионная спектроскопия, атомно-флуоресцентный анализ и др.). [c.11]

    Почему метод пламенной эмиссионной спектроскопии особенно популярен при определении щелочных и щелочно-земельных металлов  [c.207]

    Фотометр фотоэлектрический пламенный ПФМ. Этот прибор предназначен для количественного анализа элементов методом пламенной эмиссионной спектроскопии. В качестве горючего [c.195]

    Эмиссионная спектроскопия — метод элементного анализа по атомным спектрам испускания. Атомизацию растворов производят так же, как и в атомно-абсорбционной спектроскопии. Спектры испускания регистрируют обычно в спектрографах на фотопластинках — получают спектрограммы. Плотность почернения линий определяют с помощью микрофотометров. Для количественного анализа используют зависимость плотности почернения линий от концентрации излучающих атомов. Этот метод позволяет определять практически все элементы прн содержании Ю" —10 мае. долей, %. [c.241]

    В разделе 5.4 указывалось на важность сочетания разных методов исследования поверхностных соединений. Количественное определение углерода и других элементов в модифицирующих поверхность соединениях производится элементным анализом, а ИК спектры помогают установить, какие именно группы и в каком количестве содержатся в поверхностном соединении. Содержание элементов в поверхностных соединениях можно определить с помощью зондирующего воздействия различных пучков на поверхность твердого тела, служащего рассеивающей мишенью для такого воздействия. Для зондирования используются направленные пучки фотонов, электронов, ионов илц атомов, вызывающие эмиссию вторичных частиц (также фотонов, электронов, ионов или атомов), лзучение которой и позволяет судить о свойствах мишени. Помимо элементного анализа, с помощью зондирующего воздействия на поверхность в благоприятных случаях можно получить сведения о структуре поверхности и адсорбции на ней. В табл. 5.4 представлены некоторые из этих методов. Перечисленные в таблице методы. анализа поверхности, за исключением рентгеновской эмиссионной спектроскопии, позволяют исследовать поверхностные слои на глубину менее 10 нм. В этих методах зондирование поверхности и ана--лиз рассеиваемых или эмиттируемых частиц проводится в очень высоком вакууме. Для дополнительной очистки поверхность часто подвергается предварительной бомбардировке частицами высокой энергии, обычно аргонной бомбардировке. С этим связаны ограничения в применении некоторых из этих методов для исследования поверхности недостаточно стойких адсорбентов. Преимуществом этих методов является возможность локального исследования не- [c.109]


    Спектральный анализ (эмиссионный) — физический метод качественного и количественного анализа состава вещества на основе изучения спектров. Оптический С. а. характеризуется относительной простотой выполнения, экспрессностью, отсутствием сложной подготовки проб к анализу, незначительным количеством вещества (10—30 мг), необходимого для анализа на большое число элементов. Спектры эмиссии получают переведением вещества в парообразное состояние и возбуждением атомов элементов нагреванием вещества до 1000—10 000°С. В качестве источников возбуждения спектров прп анализе материалов, проводящих ток, применяют искру, дугу переменного тока. Пробу помещают в кратер одного из угольных электродов. Для анализа растворов широко используют пламя различных газов. Качественный н полуколичественныйС. а. сводятся к установлению наличия или отсутствия в спектре характерных линий и оценки по их интенсивностям содержания искомых элементов. Количественное определение содержания элемента основано на Эмпирической зависимости (при малых содержаниях) интенсивности спектральных линий от концентрации элемента в пробе. С. а.— чувствительный метод и широко применяется в химии, астрофизике, металлургии, машиностроении, геологической разведке и др- МетодС. а. был предложен в 1859 г. Г. Кирхгофом и Р. Бунзеном. С его помощью гелий был открыт на Солнце ранее, чем на Земле. Спектроскопия инфракрасная — см. Ифракрасная спектроскопия. Спектрофотометрия (абсорбционная)—физико-химический метод исследования растворов и твердых веществ, основанный на изучении спектров поглощения в ультрафиолетовой (200—iOO нм), видимой (400—760 нм) и инфракрасной (>760 нм) областях спектра. Основная зависимость, изучаемая в С.,— зависимость интенсивности поглощения падающего света от длины волны. С. широко применяется при изучении строения и состава различных соединений (комплексов, красителей, аналитических реагентов и др.), для качественного и количественного определения веществ (определения следов элементов в металлах, сплавах, технических объектах). Приборы С.—спектрофотометры. [c.125]

    Информация о качественном составе образца, которую мы получаем при анализе пробы, находит свое выражение в константах вещества 2/ (например, потенциал полуволн в полярографии, длины волн резонансных линий в атомно-эмиссионной спектроскопии, величина Rf в бумажной хроматографии и т. п.). Во многих методах инструментального анализа измерения проводят в интервале zv— Z2, т. е. от нижней до верхней границы значений, и появляющиеся сигналы записывают (рис. Д.174 и Д.175). При этом часто получают колоколообразную кривую, которая приближенно описывается функцией Лоренца или Гаусса (газовая хроматография, дифференциальный термический анализ, атомная спектроскопия и т. д.). В методах, дающих интегральную S-образную кривую, например в постояннотоковой полярографии, осуществляя дифференцирование при помощи определенной схемы, также можно получить аналогичную колоколообразную кривую. И наоборот, интегрирование колоколообразной кривой приводит к кривой S-образной формы. Координата максимума сигнала колоколообразной кривой или [c.448]

    Какой вид имеет зависимость свойство - концентрация в методе эмиссионной спектроскопии пламени  [c.207]

    Это затрудняет проведение качественного анализа на основании молекулярных спектров (за исключением ИК-спектров), поэтому спектрофотометрический метод обычно используют как метод количественного анализа. В отличие от других оптических методов (эмиссионная спектроскопия, люминесценция и др.), в которых измеряют интенсивность излучения предварительно возбужденной системы, спектрофотометрический метод анализа основан на избирательном поглощении однородной нерассеивающей системой электромагнитных излучений различных участков спектра. Если имеют дело с однородными средами, например растворами соединений, то количество поглощенной энергии будет пропорционально концентрации поглощаемого вещества в растворе. Если среда неоднородна, то при взаимодействии электромагнитного излучения с веществом помимо поглощения будет происходить также его рассеяние. На этом явлении основаны такие методы количественного анализа, как нефелометрия и турбидиметрия, которые здесь не рассматриваются. [c.45]

    Амперометрическое титрование Бумажная хроматография Высокочастотное титрование Ионообменная хроматофафия Кинетический метод Кондуктометрическое титрование Нефелометрический метод Полярографический метод Потенциометрическое титрование Пламенная эмиссионная спектроскопия Спектральный [c.319]

    Главное направление развития М. а.-использование физ. методов (напр., масс-спектрометрии, атомно-эмиссионной спектроскопии, рентгеновского локального анализа, лазерной аналит. спектроскопии). Совр. методы М. а. позволяют Б одной микропробе или на пов-сти твердого тела определять более 50-60 элементов. [c.85]


    В книге, состоящей из 40 глав, основное место, естественно, уделяется описанию различных методов исследования полимеров. Представлены все методы определения молекулярных весов полимеров, их молекулярновесового распределения, обсуждаются разнообразные спектральные методы, применяющиеся для анализа строения и структуры гомо- и сополимеров УФ-, ИК-, КР-спектро-скопия, эмиссионная спектроскопия, спектроскопия ЯМР, масс-спектроскопия, спектроскопия ЭПР, нейтронное рассеяние, аннигиляция позитронов. Ряд глав посвящен хроматографическим методам, таким, как газовая и жидкостная хроматография, в том числе и при высоких давлениях, тонкослойная хроматография, ионообменная хроматография, ситовая хроматография, включая гель-про-никающую хроматографию, хроматография с обращением фаз. Методы анализа структуры полимеров обсуждаются при рассмотрении электронной микроскопии, рентгеноструктурного анализа, дифракции электронов и ряда других методов. Физические свойства полимеров оцениваются с помощью таких методов, как дилатометрия, определение температур плавления и стеклования полимеров, их электрических характеристик, анизотропии, диффузии и поверхностного натяжения. Представлены также методы исследования различных видов деструкции полимеров. [c.6]

    Метод эмиссионной спектрометрии с индукционной плазмой (ИСП-спектроскопия) в последние несколько лет широко используют во всех странах (в том числе и в России) для определения очень низких содержаний тяжелых металлов (на уровне ПДК и ниже) в различных объектах окружающей среды (воздух, вода, почва, растительность и др.). Единственным альтернативным эмиссионной спектроскопии методом является атомно-абсорбционная спектроскопия (см. раздел 2), которая так же часто применяется для определения десятков металлов в разных средах [5, 7, 8]. [c.232]

    В прямых методах используется зависимость физикохимического свойства, называемого аналитическим сигналом или просто сигналом, от природы вещества и его количества или концентрации. Свойством, зависящим от природы вещества, является, например, длина волны спектральной линии в эмиссионной спектроскопии, потенциал полуволны в полярографии и Т.Д., а количественной характеристикой служит интенсивность сигнала - интенсивность спектральной линии в первом случае, сила диффузионного тока во втором и т.п. В некоторых случаях связь аналитического сигнала с природой вещества установлена строго теоретически. Например, линии в спектре атома водорода могут быть рассчитаны по теоретически выведенным формулам с использованием фундаментальных констант (постоянная Планка, заря электрона и т.д.). [c.125]

    Можно ли методом пламенной эмиссионной спектроскопии определять несколько элементов в растворе без их разделения  [c.207]

    Методы определения часто делят на химические и физико-химические, иногда выделяя группу физических методов анализа. К химическим, или, как их еще называют, классическим методам анализа относят гравиметрический и титриметрический. В физико-химических и физических методах анализа наблюдаются и измеряются такие свойства вещества, как интенсивность спектральной линии в эмиссионной спектроскопии, величина диффузионного тока в полярографии и т. д. Многообразие физико-химических методов анализа является проявлением многообразия форм существования и движения материи. [c.13]

    Конечно, не в каждой методике реализуются все эти этапы. Иногда нет необходимости растворять пробу или проводить предварительное разделение компонентов. Эти этапы нередко исключаются, например, при анализе металлов и сплавов в эмиссионной спектроскопии или в некоторых радиометрических методах. [c.17]

    Эмиссионная спектроскопия, нашедшая широкое применение в-атомной спектроскопии, для изучения молекул используется реже. Эмиссионные спектры возникают путем возбуждения электронов в атомах или молекулах при сообщении им избыточной энергии извне и последующего возвращения их в основное состояние с испусканием квантов энергии в виде излучения строго определенных частот. Для перевода вещества в возбужденное состояние нередко применяют пламя горелки, дуговой или искровой разряд. Однако нри этом многие химические связи в молекулах разрываются и наблюдаемый эмиссионный спектр представляет собой спектр продуктов диссоциации — радикалов, атомов и ионов. В то же время именно это делает метод эмиссионной спектроскопии одним из плодотворных экспериментальных приемов для изучения радикалов, играющих решающую роль в протекании многих цепных реакций. Эмиссионные спектры используются также для изучения электронных оболочек атомов, свойств среды, образованной совокупностью атомов, получения некоторых сведений о состоянии ядер атомов, а также для целей качественного и количественного атомного спектрального анализа. [c.157]

    В соответствии с существующей в настоящее время теоретической концепцией получение абсолютно чистых веществ т. е. совершенно не содержащих примесей) принципиально возможно, но только в очень небольшой области концентраций для достаточно большой пробы чистого вещества и за более или менее ограниченный промежуток времени. Для контроля чистоты необходимы особо чувствительные методы анализа. Применение методов ультрамикроанализа позволяет осуществить мечту аналитиков — обнаружение отдельных атомов в матрице вещества. Одним из таких методов является лазерная спектроскопия. Вещество испаряют и атомы селективно возбуждают действием лазерного излучения в узкой области частот. Возбужденный атом затем ионизируется вторичными фотонами. Число испускаемых при этом свободных электронов фиксируют пропорциональным счетчиком. С помощью эффективно действующей лазерной установки можно ионизировать все атомы определяемого вещества. Метод, основанный на использовании этого явления, называют резонансной ионизационной опектро-скопией (РИС). Например, можно определять отдельные атомы цезия. В другом варианте метода — оптически насыщенной нерезонансной эмиссионной спектроскопии (ОНРЭС) — измеряют интенсивность флуоресцентного излучения возбужденных атомов. Чтобы отличить излучение определяемых элементов от излучения других компонентов пробы, длины волн флуоресценции сдвигают воздействием других атомов или молекул. Этим методом также можно определять отдельные атомы вещества, например натрия. [c.414]

    Вся эта группа методов вместе с абсорбционной и эмиссионной спектроскопией в УФ и видимой областях, включая спектры люминесценции и в меньшей степени по распространенности рентгеновские спектры, используется в структурных исследованиях, в частности, позволяет получать информацию об электронной структуре вещества, а также в аналитических целях. [c.134]

    Рассматривая методы и методики, следует сказать об их универсальности — возможности обнаруживать или определять многие компоненты. Особенно ценно иметь возможность обнаруживать или определять многие компоненты одновременно из одной пробы, т. е. проводить анализ многокомпонентных систем. Высокая избирательность метода и его универсальность не противоречат друг другу многие универсальные методы анализа отличаются высокой избирательностью определения отдельных компонентов, например, такие методы, как хроматография, некоторые виды вольтам-перометрии, атомно-эмиссионная спектроскопия. Методами атомноэмиссионной спектроскопии с применением индуктивно связанной плазмы и квантомвтров можно определять из одной пробы (без разделения) 25—30 различных элементов. [c.27]

    Метод мёссбауэровской эмиссионной спектроскопии имеет особенно важное значение в тех случаях, когда исходное соединение железа трудно синтезировать и выделить. [c.297]

    В методах эмиссионной спектроскопии и атомно-абсорбцион-ной спектрофотометрни вещество переводится в состояние атомного пара , что практически реализуется в плазме различных видов. Плазма — квазииейтральный электропроводный газ, состоящий из свободных электронов, а также атомов, ионов, радикалов и молекул в основных и различных возбужденных энергетических состояниях. Кроме спектральных линий в ее спектре наблюдаются системы электронно-колебательпо-вращательных полос молекул и радикалов и сплошной фон. Плазма при давлениях, близких к атмосферному, находится в состоянии термодинамического равновесия, при котором средняя кинетическая энергия Е ее частиц (свободных атомов, ионов, электронов) примерно одинакова и определяется температурой 7  [c.10]

    Метод атомно-абсорбционной спекфоскопии [9], в основе которого лежит измерение поглощения резонансной линии свободными атомами определяемого элемента, находящимися в невозбужденном состоянии, при прохождении света через пары исследуемого образца, обладает высокой экспрессностью и хорошей точностью Его основное преимущество перед другими методами в высокой селективности, простоте подготовки проб к анализу и возможности определения нескольких элементов из одного раствора по единой методике. Однако при всех достоинствах он уступает по производительности атомно-эмиссионной спектроскопии. При необходимости одновременного определения нескольких элементов 246 [c.246]

    Рассматривая спектроскопические методы определения и обнаружения суперэкотоксикантов в целом, можно видеть, что между ними существуют принципиальные различия Хотя для всех методов характерно взаимодействие вещества с потоком первичной энергии, в абсорбционной спектроскопии измеряется энергия, не поглощенная образцом, а в эмиссионной спектроскопии - энергия, вьщеляемая в процессах возбуждения исследуемых компонентов. Поскольку для абсорбционных методов характерно относительно слабое взаимодействие вещества с потоком первичной энергии, то измерить небольшое (особенно в случае следовых количеств) различие в энергиях падающего и проходящего излучений можно лишь с помощью достаточно чувствительной аппаратуры, В эмиссионных методах даже небольшие концентрации излучающего вещества обусловливают появление аналитического сигнала. По этой причине спектроскопические методы, основанные на эмиссии, обладают более низким пределом обнаружения, чем абсорбционные. Однако, как уже отмечалось выше, преимущества эмиссионных методов офаничиваются ря юм практических и экспериментальных факторов. [c.254]

    С люминесцентным методом могут конкурировать лишь более селективные методы — масс-спектроскопия или эмиссионная спектроскопия. Чтобы вызвать люминесценцию вещества, к нему необходимо извне подвести определенное количество энергии. Например, при поглощении квантов ультрафиолетового излучения частицы вещества переходят в возбужденное состояние, характеризующееся более высоким запасом энергии. Возбужде.чные частицы обычно довольно быстро теряют свою избыточную энергию и переходят в невозбужденное состояние. Такой переход может сопровождаться излучением (люминесценцией). Люминесцирующая частица, поглощая энергию возбуждения, превращает ее в собственное излучение. Эта важная особенность люминесценции отличает ее от других видов излучения. [c.88]

    Фотометрию пламени в узком смысле можно рассматривать как метод эмиссионной спектроскопии. Окрашивание пламени, возникающее, например, при внесении летучих солей щелочных и щелочноземельных металлов в пламя, издавна используют для целей качественного анализа. Но визуальным методом можно определить окрашивание пламени только в видимой части сп( ктра и невозможно разложить смешанную окраску на составные цвета, а интенсивность окраски можно оценить лишь очень приешизительно. В фотометрии пламени измеряют интенсивность излучения и при определенных условиях используют зависимость ее от концентрации веществ, вызывающих окрашивание пламени. [c.373]

    Систематические ошибки измерения могут искажать значение параметра 2 , применяемого для получения информации о качественном составе веществ. 11апрнмер, в полярографии при определении потенциала полуволны могут быть получены неправильные значения напряжения ячейки, потенциала электрода сравнения, диффузионного потенциала и т. д. Ситуацию в таких случаях можно улучшить добавлением стандарта с определенным известным значенибм 2ст, например ионов Т1+, значение потенциала полуволны которых. —0,49 В, измеренное относительно насыщенного каломельного электрода, не зависит от фонового электролита. Координаты стандартного сигнала используют также н методах оптической атомной эмиссионной спектроскопии, ЯМР и т. д. [c.451]

    Рассказать о фотоэлектрических методах эмиссионной спектроскопии и привести припципиа,иьную схему прибора типа ФЭСА-6. [c.127]

    Помимо относительно невысокой точности многие физико-химические методы имеют и некоторые другие недостатки. Например, эмиссионная спектроскопия удобна лишь при проведении массовых анализов, так как для определения того или иного элемента в образце требуется калибровка 1рибора по стандартному образцу, занимающая много времени. Ни одни из физико-химических и физических методов анализа не является универсальным. [c.21]

    В атомноабсорбционном анализе (в противоположность эмиссионному) роль газового пламени сводится лишь к испарению и термическому разложению пробы. Поэтому чувствительность атомноабсорбционного анализа при определении легко-и трудновозбуждаемых элементов достаточно высока. Кроме того, отпадает проявляющийся при термическом возбуждении матричный эффект. Заметным становится только влияние некоторых факторов, затрагивающих испарение пробы и процесс диссоциации (следовательно, в основном влияние анионов). Рассмотрение заселенности уровней Л/ /Л/о возбужденного и основного состояний [уравнение (5.1.12)1 показывает, что при температуре пламени по-прежнему остается меньше Л о. Так как выводы в атомноабсорбционной спектрофотометрии делают, учитывая свойства атомов, находящихся в основном состоянии, чувствительность ее при определении большого числа элементов выше, чем методов эмиссионной спектроскопии. Температура пламени пе оказывает существенного влияния на чувствительность, но она должна обеспечить получение достаточно большого числа свободных атомов металлов [20].  [c.198]

    Методы абсорбционной спектроскопии ввиду их большой чувствительности и избирательности широко применяются при решении многих задач аналитической химии. Эти методы используют при контроле производства и анализе готовой продукции ряда отраслей промышленности химической, металлургической, металлообрабагы-ваюш,ей, в почвенном, биохимическом анализе, а также для определения малых и ультрамалых количеств примесей в веществах особой чистоты (10 —10" %). Для определения больших количеств веществ с точностью, не уступающей гравиметрическим и тит-риметрическим методам, а также при анализе многокомпонентных систем применяют различные варианты дифференциальной спектро-фотометрии. При автоматизации контроля производства рационально использовать метод спектрофотометрического титрования. Методы абсорбционной спектроскопии остаются труднозаменимыми при анализе объектов, содержащих ядовитые летучие соединения, что делает ограниченным применение атомно-абсорбционного метода и методов эмиссионной спектроскопии. Особенно большое значение имеют методы абсорбционной спектроскопии для исследования процессов комплексообразования и получения количественных характеристик комплексных соединений. [c.3]

    Отметим прежде всего, что аналитический сигнал — экстенсивная величина (пропорциональная массе или концентрации) физического свойства анализируемой пробы. Примерами таких величин могут служить оптическая плотность (абсорбционная спектроскопия), яркость линии или полосы (эмиссионная спектроскопия, люминесценция), масса осадка (гравиметрия), расход титранта (тит-риметрия), радиоактивность пробы (радиометрия), понижение температуры замерзания (криоскопия). Вместе с тем следует отметить, что аналитический сигнал является двумерной величиной. Экстенсивная величина регистрируется или измеряется при определенном значении (или в некотором интервале значений) интенсивного параметра, или параметра развертки аналитического сигнала. Такими параметрами являются частота (длина волны) поглощаемого или излучаемого света в спектроскопических методах, потенциал в полярографии и амперометрии, значение pH в комплексонометрии и гравиметрии, период полураспада (длина волны, энергия излучения) в радиометрии и т. д. Все эти величины не зависят от массы анализируемой пробы .  [c.10]

    Иарли изучалась возможность определения азота в нефтяных коксах (сырых и прокаленных) с использованием эмиссионной спектроскопии. В литературе описаны методы определения азота в металлах и сплавах с применением различных режимов искрового источника возбуждения. Применение иск-РОЕОГО источника для получения атомного спектра азота при анализе нефтяных коксов не привело к положительным результатам. Исследование различных линий в видимой и инфракрасной области спектра при различных способах введения образца в разряд, создание контролируемой аргоновой атмосферы позволили получить нижний предел обнаружения азота около 0,3%, что совершенно недостаточно для прокаленных коксов. [c.134]


Смотреть страницы где упоминается термин Эмиссионная спектроскопии методы: [c.8]    [c.205]    [c.12]    [c.64]    [c.132]    [c.381]    [c.420]    [c.12]    [c.130]    [c.12]    [c.31]   
Физические методы анализа следов элементов (1967) -- [ c.177 ]




ПОИСК





Смотрите так же термины и статьи:

Спектроскопия эмиссионная

гом эмиссионный



© 2025 chem21.info Реклама на сайте