Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектральный метод качественный

    Спектральный метод качественного определения отличается большой чувствительностью, причем не существенно, является ли натрий основным компонентом пробы (разд. 37.2.1.2). [c.599]

    СПЕКТРАЛЬНЫЙ МЕТОД КАЧЕСТВЕННОГО АНАЛИЗА  [c.215]

    Общие сведения о спектральных методах качественного анализа [c.215]

    Спектральный анализ сплавов. Метод эмиссионного спектрального анализа может быть успешно применен при анализе сплавов с целью идентификации данного сплава и обнаружения в нем составляющих элементов. Проведение анализа без разрушения анализируемого образца выгодно отличает спектральный метод качественного анализа от других методов. [c.266]


    Возникновение оптических спектров не только подтвердило дискретную природу энергетических состояний электронов в атомах, но и позволило разработать спектральные методы качественного и количественного определения примесей одних веществ в других веществах атомно-абсорбционный, пламенно-фотометрический, лазерный атомно-ионизационный, оптический эмиссионный спектральный анализ. Качественный спектральный анализ основан на обнаружении в оптическом спектре характерных для данного элемента спектральных линий при помощи точного определения длин волн этих линий. [c.533]

    Достоинством Ж-спектрального метода является возможность качественной идентификации с целью обнаружения фуллеренов в исследуемом объекте. Это относится и к сложным смесям соединений, содержащих молекулы фуллеренов, т.е. для обнаружения фуллеренов при помощи данного метода не требуется предварительной очистки образца. Однако калибровка по Ж-спектрам зависит от особенностей конкретного прибора и условий приготовления образцов, что не позволяет получить аналитические зависимости в универсальной форме. Кроме того, существуют ограничения по концентрационной чувствительности данного метода [21], что создает дополнительные трудности для количественной идентификации фуллеренов в растворах в силу их низкой растворимости в органических растворителях. [c.14]

    Спектроскопия занимает ведущее положение среди современных инструментальных методов анализа. В спектральных методах используют различные формы взаимодействия электромагнитного излучения с веществом для определения структуры соединений, свойств атомов и молекул, для качественного обнаружения и количественного анализа веществ. В этой главе дан краткий обзор спектроскопических методов анализа и подробно рассмотрены наиболее важные из них. [c.352]

    К оптическим методам анализа относится совокупность методов качественного и количественного анализов по интенсивности инфракрасного (ИК), видимого и ультрафиолетового (УФ) излучения. Это атомно-абсорбционный, эмиссионный спектральный, люминесцентный анализы, турбидиметрия, нефелометрия и фотометрический анализ, под которым обычно понимают методы регистрации поглощения молекулами определяемого компонента излу-чения в ИК, видимой и УФ-областях. [c.131]


    СПЕКТРАЛЬНЫЙ АНАЛИЗ (эмиссионный)—физический метод качественного и количественного анализа состава вещества, основанный на изучении спектра паров исследуемого вещества. Наличие в спектре характерных линий для данного элемента свидетельствует о присутствии этого элемента в анализируемом веществе (качественный анализ). Интенсивность линий спектров элементов служит мерой концентрации их (количественный анализ). С. а. простой, быстрый, не требует сложной подготовки и большого количества проб. В навеске 10—30 мг можно определить большое число элементов. С. а. чувствителен, его широко используют в химии, астрофизике, металлургии и т. п. С. а. предложен в 1859 г. Г. Кирхгофом и Р. Бунзеном. [c.234]

    В книге излагаются четыре наиболее широко применяемых в учебных лабораториях бессероводородных метода качественного анализа катионов аммиачно-фосфатный, кислотно-щелочной, сульфидно-щелочной, тио-ацетамидный и спектральный. [c.2]

    ГЛАВА XII. СПЕКТРАЛЬНЫЙ МЕТОД ОБНАРУЖЕНИЯ ЭЛЕМЕНТОВ И ЕГО ПРИМЕНЕНИЕ В КАЧЕСТВЕННОМ АНАЛИ ЗЕ  [c.181]

    Методика использования спектрального метода в практикуме качественного анализа разработана на кафедре аналитической химии Казанского химикотехнологического института им. С. М. Кирова и успешно применяется в течение ряда лет. [c.181]

    Методы атомного спектрального анализа качественного и количественного в настоящее время разработаны значительно лучше, чем молекулярного, и имеют более широкое практическое применение. Атомный спектральный анализ используют для анализа самых разнообразных объектов. Область его применения очень широка черная и цветная металлургия, машиностроение, геология, химия, биология, астрофизика и многие другие отрасли науки и промышленности. [c.10]

    Масс-спектральный метод позволяет проводить анализ химического состава смесей и элементный анализ. Возможен качественный и количественный анализ. Количественный анализ основан на пропорциональности интенсивности линий масс-спектра каждого из веществ его парциальному давлению в области ионизации. Суммарный масс-спектр аддитивно складывается из масс-спектров всех компонентов смеси. Можно анализировать все смеси (газы, жидкости, твердые), которые в ионизационной камере прибора полностью испаряются без разложения компонентов. Эффективность масс-спектрометрии как метода молекулярного анализа сильно увеличивается при его комбинациях с хроматографией, инфракрасной и ультрафиолетовой спектроскопией. Особенно эффективна комбинация с хроматографией, когда [c.451]

    Спектральный анализ относится к числу наиболее широко применяемых физических методов качественного и количественного анализа вещества. При помощи спектрального анализа можно открыть присутствие ничтожных следов элементов, так как он отличается высокой чувствительностью. Этот анализ позволяет одновременно определять многие элементы при совместном их присутствии. Спектральный анализ дает надежные результаты и имеет то преимущество перед химическими методами анализа, что в большинстве случаев не требует предварительного разделения анализируемых веществ. Кроме того, для проведения спектрального анализа требуется немного времени и достаточно небольшого количества испытуемого вещества (несколько миллиграммов). [c.474]

    Огромное число органических соединений не дает возможности создать для их идентификации химическими методами стройную схему систематического разделения, подобную имеющейся в неорганическом качественном анализе. В большинстве случаев с помощью хроматографических методов — газовой хроматографии (разд, А, 2.5,4.3), а также бумажной и тонкослойной хроматографии (разд. А, 2.5.4 и А, 2.6.3) — оказывается возможным определить число веществ в анализируемой смеси. Комбинируя описанные ниже предварительные испытания со спектральными методами (ИК-, УФ- и ЯМР-спектроскопия), можно в короткий срок установить качественный состав смеси. [c.291]

    Идентификация индивидуальных компонентов дубильных веществ основана на хроматографических методах (хроматография на бумаге и тонкослойная), спектральных исследованиях, качественных реакциях и изучении продуктов расщепления. [c.117]

    Методы качественного спектрального анализа (приборы). [c.145]

    Эмиссионным спектральным методом ЗЬ можно легко обнаруживать не только в сплавах, минералах, рудах и других твердых материалах, но также и в газах. Описан [943] метод качественного и количественного определения ЗЬ одновременно с Аз, основанный на восстановлении их до гидридов, пропускании последних через злектрический разряд и регистрации излучения ЗЬ и Аз при 228,8 и 252,8 нм соответственно. [c.18]

    Пары лития имеют ярко-красный цвет, а его летучие соединения окрашивают пламя горелки в карминово-красный цвет, что используется для качественного обнаружения лития. В спектре лития главная серия линий (42 линии) находится в интервале 6708,2—2302,2 А наиболее четкие линии спектра, используемые в спектральном анализе 6707,84 6103,64 4603,00 и 3232,61 А [36]. Чувствительность определения лития спектральным методом составляет 1,25-10 мг [37]. [c.14]


    Спектральный анализ. В широком смысле слова это название включает целый набор методов качественного и количественного анализа, основанных на использовании спектров испускания (эмиссионных), поглощения, отражения и люминесценции. Исторически и практически наиболее важен классический атомно-эмиссионный спектральный анализ, предназначенный для качественно-1 о и количественного элементного анализа вещества. Он позволяет определять практически все элементы периодической системы в широчайшем диапазоне концентраций - от 10 % мае. (10 г/л) [c.455]

    В дополнение к определениям температуры пара и показателя преломления, которые обычно применяются для того, чтобы следить за течением разгонки и как средство интерпретации результатов разгонки, применяются также исследования других физических свойств, которые позволяют получить более полную картину исследуемой смеси. Так, иногда определяются плотности, вязкости, вращение плоскости поляризации света и температуры плавления. Обычно эти методы применяются лишь тогда, когда показатель преломления или точки кипения или обе величины вместе не дают точного ответа. Исследование вращения поляризованного света применяется к таким природным продуктам, как терпены и их производные. Температуры плавления и застывания имеют более широкое применение, в частности как критерий чистоты. Применение температур плавления получило значительное распространение в недавних исследованиях углеводородов, плавящихся при низких температурах [157]. Методы таких физических измерений могут быть найдены в книгах, посвященных физико-химическим методам [130], или в оригинальной литературе. Более широко применяются анализы с помощью ультрафиолетовых, инфракрасных спектров, спектров комбинационного рассеяния и масс-спектрального метода как для качественных, так и для количественных определений. [c.264]

    Анализ. Для количественного определения содержания метоксильных групп в М. применяют объемный микрометод, основанный на отщеплении метоксильных групп конц. Н1 и выделении образующегося СН.Л. Получаемый после ряда последовательных реакций иод оттитровывают тиосульфатом натрия. Метоксильные группы в М. могут быть определены также спектральным методом. Качественно М. может быть определена с помощью хромотроповой к-ты или антрона (9, 10-дигидро-9-оксоантрацепа). При нагревании хромотро-попой к-ты с М. в присутствии нерекиси бензоила появляется фиолетовое окрашивание. Антрон в присутствии серной к-ты с М. дает зеленое окрашивание. Р-р иода в КТ окрашивает М. от фиолетово-коричневого до фиолетового цвета, пропадающего в присутствии сильной щелочи. Для качественного определения можно использовать способность танина осаждать М. из водных р-ров в виде хлопьев. [c.107]

    Представляет интерес работа Шпеккера [68] по изучению пригодности различных экстракционных методов отделения железа применительно к определению в нем примесей других элементов. Котрбова [69] разработала спектральный метод качественного определения в металлическом железе меди, серебра, магния, цинка, кадмия, бора, алюминия, кремния, олова, свинца, титана, сурьмы, висмута, ванадия, хрома, вольфрама, марганца, кобаль- [c.26]

    Пиромеллитовый диангидрид (ПМДА) получают в промышленных масштабах либо парофазным окислением, причем образуются 11римеси ангидридной структуры, либо жидкофазным окислением ароматических углеводородов. В последнем случае возможны примеси кислотного типа. При спектральном определении.содержания ПМДА в продуктах парофазного окисления возможна весьма заметная ошибка за счет близкого расположения полос поглош,ения ПМДА и фталевого ангидрида П]. А хроматографическое определение в виде метиловых эфиров не позволяет раздельно определять ПМДА и соответствующую кислоту [2]. Следовательно, спектральный метод не может служить качественным методом определения ПМДА в присутствии больших количеств фталевого ангидрида, а хроматографический — в присутствии пиромеллитовой кислоты. В связи с этим представляет интерес качественная реакция, которая позволила бы обнаруживать ПМДА в присутствии вышеперечисленных примесей. По нашему мнению, такой реакцией может служить образование л-комплекса с ароматическими углеводородами. [c.139]

    Например, только линейная молекула с центром симметрии может иметь полосу поглощения с такой тонкой структурой, как у приведенной на рис. 17. / полосы этина (ацетилена) таки.м образом, может быть достаточно одних качественных особенностей спектра для однозначного определения формы молекулы. Из количественного анализа тонкой структуры ряда полос можно определить межатомные расстояния я уг.лы между связями с большей точностью, чем любыми не спектральными методами. Точность спектральных определений молекулярных размеров на порядок величины и более превог-ходит точность электронографических измерений. [c.482]

    Спектральный анализ — физический метод качественного и количественного анализа веществ, основанный на изучении их спектров, подразделяющихся на спектры испускания (э.миссионный), поглощения (абсорбционный), комбинационного рассеяния света, люминесценции, рентгеновские. [c.43]

    В пособии описаны бессероводородные методы качественного полумикроанализа методы анализа катионов — аммиачно-фосфатный, кислотно-основный, бифталатный, сульфидно-щелочной, тиоацета-мидный, методы анализа анионов и физико-химические методы качественного анализа — полярографический, хроматографический,, спектральный, лкаминесцентный. Приводятся методы разделения и концентрации с помощью осаждения, соосаждения, экстракции, хроматографии и электрохимические. Первое издание вышло в )971 г. Предназначено для студентов нехимических специальностей вузос. [c.295]

    ИДЕНТИФИКАЦИЯ, установление тождества (идентичности) неизвестного хим. соед. с известным путем сравнения нх физ. и хим. св-в. И. неорг. соединений основана М. обр. на обнаружении катионов и анионов с помощью ирактерных хим. р-ций (см. Качественный анализ). JB ряде случаев (напр., для комплексных соед.) определяют ( одержание или соотношение ионов. Измеряют также константы диссоциации, теплопроводность, электрич. прово-шмость, устанавливают тип кристаллич. решетки и т. д. рольшое значение приобрели спектральные методы — ИК g УФ спектроскопия, ЯМР и т. д. [c.207]

    Качественно E. обнаруживают спектральными методами. Количественно его определяют путем гидролитич. разложения с послед, определением Н3ВО3 и NHj. [c.302]

    Определение. Качественно И. может быть обнаружен по сине-фиолетовому окрашиванию пламени или спектральным методом. Предложен ряд р-ций с СэС , фторидом, тиоцианатом, оксалатом аммония, акридином, 8-гидроксихинолином и др., а также ряд цветных р-ций с ализарином, морином, алюминоном и др. реагентамн. Эти хим. р-ции малоспецифичны и требуют предварит, отделения И. от большинства др. элементов. [c.227]

    Спектральный анализ (эмиссионный) — физический метод качественного и количественного анализа состава вещества на основе изучения спектров. Оптический С. а. характеризуется относительной простотой выполнения, экспрессностью, отсутствием сложной подготовки проб к анализу, незначительным количеством вещества (10—30 мг), необходимого для анализа на большое число элементов. Спектры эмиссии получают переведением вещества в парообразное состояние и возбуждением атомов элементов нагреванием вещества до 1000—10 000°С. В качестве источников возбуждения спектров прп анализе материалов, проводящих ток, применяют искру, дугу переменного тока. Пробу помещают в кратер одного из угольных электродов. Для анализа растворов широко используют пламя различных газов. Качественный н полуколичественныйС. а. сводятся к установлению наличия или отсутствия в спектре характерных линий и оценки по их интенсивностям содержания искомых элементов. Количественное определение содержания элемента основано на Эмпирической зависимости (при малых содержаниях) интенсивности спектральных линий от концентрации элемента в пробе. С. а.— чувствительный метод и широко применяется в химии, астрофизике, металлургии, машиностроении, геологической разведке и др- МетодС. а. был предложен в 1859 г. Г. Кирхгофом и Р. Бунзеном. С его помощью гелий был открыт на Солнце ранее, чем на Земле. Спектроскопия инфракрасная — см. Ифракрасная спектроскопия. Спектрофотометрия (абсорбционная)—физико-химический метод исследования растворов и твердых веществ, основанный на изучении спектров поглощения в ультрафиолетовой (200—iOO нм), видимой (400—760 нм) и инфракрасной (>760 нм) областях спектра. Основная зависимость, изучаемая в С.,— зависимость интенсивности поглощения падающего света от длины волны. С. широко применяется при изучении строения и состава различных соединений (комплексов, красителей, аналитических реагентов и др.), для качественного и количественного определения веществ (определения следов элементов в металлах, сплавах, технических объектах). Приборы С.—спектрофотометры. [c.125]

    Лабораторные исследования титанооксидного катализатора (ТОК-3) проводились в ГУП Институт нефтехимпереработки и в ОАО Уфанефтехим . Образцы катализатора исследовались методами рентгеноструктурного анализа (дифрактометр ДРОН-2 с СиКц излучением), малоуглового рентгеновского рассеивания (дифрактометр КРМ-1), термографического анализа (дериватограф системы Паулик-Паулик- Эрдей в платиновых тиглях). Удельная поверхность определялась методом низкотемпературной адсорбции азота, механическая прочность - методом раздавливания гранул. Качественный анализ на содержание различных химических элементов (металлов) в составе катализатора выполнялся атомноэмиссионным спектральным методом. [c.8]

    Исследование ускорителей вулкагшзации и продуктов их тер мического распада. Масс-спектральный метод позволяет выявить аналитические характеристики индивидуальных веществ для идентификации этих соединений в вулканизатах и различных средах, контактирующих с эластомерами [45, 46]. Дня этого термолиз резин проводят в баллоне напуска масс-спектрометра с последующим разделением продуктов методом молекулярной дистилляции. Для качественного состава образующихся соединений используют ионизацию электронами низких энергий, метод высокого разрешения и прямой анализ дочерних ионов. [c.146]

    Для определения хрома масс-спектральным методом используют главным образом приборы, в которых ионы получаются путем электронного удара и искрового разряда. Первые обычно используют в сочетании с предварительным концентрированием хрома в виде летучих соединений. Так, при анализе нержавеющей стали с использованием прибора с двойной фокусировкой типа МС-9 из анализируемой пробы выделяют хром в виде гексафторацетила-цетоната хрома(1П) [629]. Предел обнаружения 0,05 нг Сг. 8-Окси-хинолинат хрома(П1) применяют для определения нанограммовых количеств хрома [923] качественно этим методом можно определить 5-10" 3 хрома. Метод определения хрома в лунных образцах и геологических материалах включает процесс превращения. Сг (III) в летучий хелат по реакции с 1,1,1-трифторпентандио-ном-2,4 в запаянной трубке, экстракцию его гексаном и последующий анализ паров экстракта методом изотопного разбавления на масс-спектрометре [736]. Погрешность метода — 1 отн.%. [c.98]

    Источником информации при аналитическом процессе служит проба. Как правило, невозможно или нецелесообразно подвергнуть анализу весь исследуемый материал, поэтому отбор представительной пробы необходим для того, чтобы информация, получаемая при анализе пробы, достаточно точно отражала химический состав объекта в целом. Качественный и особенно количественный анализ обычно ведут в параллельных пробах, причем в ответственных случаях для разных проб используются разные методы анализа. Например, пробы лунного грунта, доставленного на Землю американской экспедицией на "Аполло-11" 20 июля 1969 г., были проанализированы в целом ряде лабораторий США, СССР, Англии, Германии, Франции и Японии с применением большого набора разных спектральных методов. Эти анализы привели к согласующимся результатам и позволили сделать вывод о том, что лунный грунт, по сравнению с земным, обеднен элементами, летучими в вакууме (К, Ка, Се, В1, Вг), и обогащен труднолетучими элементами (Са, А1, Т1). [c.443]


Смотреть страницы где упоминается термин Спектральный метод качественный: [c.286]    [c.343]    [c.286]    [c.9]    [c.39]    [c.480]    [c.622]    [c.288]    [c.286]    [c.131]   
Физико-химические методы анализа Изд4 (1964) -- [ c.224 ]

Физико-химические методы анализа Издание 4 (1964) -- [ c.224 ]




ПОИСК





Смотрите так же термины и статьи:

Качественный методы



© 2024 chem21.info Реклама на сайте