Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скандий отделение

    В последовательности элементов углерод идет сразу же за бором и кремний за алюминием, но затем элементы IV группы периодической системы — германий, олово и свинец — значительно отдалены от соответствующих элементов III группы — скандия, иттрия и лантана. Германий от скандия отделен десятью элементами переходного ряда железа, олово от иттрия отделено десятью элементами переходного ряда палладия и свинец от лантана—десятью элементами переходного ряда платины и четырнадцатью лантаноидами.  [c.513]


    Это желтоватый осадок в виде хорошо фильтруемых кристаллов. Используется для отделения скандия от лантаноидов. При осаждении тиосульфата скандия в кислой среде (pH 2) лантаноиды остаются в растворе. [c.6]

    Устойчивость однотипных комплексных карбонатов скандия увеличивается в ряду ЫН4 < Ыа < К С КЬ < Сз. В воде карбонатные комплексы гидролизуются, степень гидролиза понижается в той же последовательности. Растворяются в кислотах и в концентрированных растворах карбонатов аммония и натрия. Осаждение двойного карбоната натрия используется для отделения скандия от тория, который остается в виде растворимого комплекса в растворе. [c.7]

    Ацетилацетонат скандия 8с(СНз СО СН СО СНз)з. Это вещество получается добавлением ацетилацетона в спиртовом растворе к водному раствору соли скандия с дальнейшей нейтрализацией гидроокисью аммония. Ацетилацетонат скандия имеет решетку с орторомбической структурой. Это весьма устойчивое кристаллическое соединение, плавится при 187—187,5 без разложения. Чрезвычайно мало растворим в воде, хорошо растворим в спиртах, эфире, ацетоне, хлороформе, бензоле. По термическим свойствам заметно отличается от аналогичных соединений 2г, НГ, ТЬ, Ве используется для их отделения. Возгоняется при 200° (ацетилацетонаты лантаноидов в аналогичных условиях разлагаются). [c.11]

    РЗЭ. Это свойство используется также для отделения скандия от РЗЭ и Y. [c.12]

    Содержание скандия в продуктах, получаемых при переработке комплексных руд, как правило, не превышает сотых, реже десятых долей процента. Поэтому в большинстве случаев вначале из исходного сырья получают богатые скандиевые концентраты, а из них уже затем выделяют чистые соединения. Для отделения скандия от примесей предложено много методов, использующих некотор.ую, хотя бы небольшую разницу в свойствах соответствующих соединений. [c.18]

    До настоящего времени большинство предложенных методов было реализовано в лабораторных масштабах, поэтому часто их даже трудно отделить от аналитических. Основные методы отделения скандия от примесей 1) осаждение, 2) конденсация и сублимация 3) ионный обмен 4) экстракция. Отметим, однако, что ни один из перечисленных методов не является строго специфичным для скандия получить его соединения высокой степени чистоты можно, лишь комбинируя и сочетая ряд методов. [c.18]

    Осаждение гидроокиси. Для концентрирования и отделения скандия от щелочных и щелочноземельных металлов осаждают гидроокись  [c.19]

    Для отделения от РЗЭ предложено использовать разницу в устойчивости комплексных соединений. Оксалаты скандия и РЗЭ растворяют в водном растворе этилендиаминтетрауксусной кислоты при pH 6  [c.20]


    Во всех случаях потеря скандия с осадком фторидов может быть очень большой она зависит не только от соотношения разделяемых компонентов, но и от их концентрации в растворе. Потеря также увеличивается, если есть некоторые другие примеси, в частности кальция (хороший соосадитель скандия). Есть мнение [2, стр. 100— 101], что целесообразнее использовать фторидный метод для отделения скандия от элементов, образующих более растворимые фториды от титана, циркония, железа, марганца. [c.22]

    Получение чистых соединений тория из монацитовых песков и анализ промышленных объектов на содержание в них тория связаны обычно с отделением его от природных спутников р. 3. э., иттрия, урана, железа, кремния и фосфора, а также в ряде случаев — от титана, циркония, гафния, кальция и др. Отделение тория от металлов подгруппы титана и ряда других элементов не вызывает особых затруднений. Напротив, сходство, существующее между соединениями тория и р. з. э., иттрия и скандия, делает это разделение весьма нелегким. [c.94]

    ОТДЕЛЕНИЕ ТОРИЯ ОТ СКАНДИЯ [c.124]

    Отделение скандия аммиаком в присутствии тартрата аммония [c.124]

    Отделение скандия карбонатом [c.124]

    Отделение скандия экстракцией эфиром [c.125]

    Экстракция роданида скандия эфиром из 0,5 М раствора НС1 обеспечивает практически полное его отделение от тория после трехкратного повторения операции [780]. (За одну операцию в эфир переходит 94% S ). Ве, А1, In, Мо, Re, Fe и Со экстрагируются в значительной степени вместе со скандием. Метод используют для получения чистых препаратов скандия. [c.125]

    Отделение тория и р. з. э. от скандия экстракцией смесями органических растворителей на полосках бумаги описано на стр. 118 и 119. [c.125]

    Отделение скандия сублимацией ацетилацетоната [c.125]

    Определение скаидия при помощи ксиленолового оранжевого проводят при рИ 1,5. В 5ти условиях не мешают нойы щелочноземельных элементов, лантана, празеодима, неодима, самария, церия (П1), иттрия, цинка, кадмия, алюминия, марганца, железа (И). Поэтому метод можно применять для фотометрического определения скандия в металлическом магнии и магниевых сплавах без отделения компонентов сплава. Мешают ионы циркония, тория, галлия и висмута, образующие с ксиленоловым оранжевым окрашенные соединения. Соединения железа (П1) и церия (IV) предварительно восстанавливают аскорбиновой кислотой. [c.373]

    Таким образом, из 17 элементов, относящихся к РЗЭ, он учитывал только пять лантан, церий, дидим, эрбий и иттрий. Введенный Менделеевым в первые варианты периодической системы дидим впоследствии был расшифрован (с. 75) как смесь неодима и празеодима. Эрбий, иттрий и открытый к этому времени, но охарактеризованный не полно тербий тоже представляли собой смесь нескольких элементов (с. 65). Они, как выяснилось позже, содержали значительные количества гадолиния, тербия (истинного), диспрозия, гольмия, эрбия (ис-гинного), тулия, иттербия, лютеция, а также скандия и истинного иттрия. Менделееву были хорошо известны экспериментальные трудности, связанные с выделением редких металлов в чистом виде и особенно с их анализом. Обсуждая проблему размещения в периодической системе дидима и лантана, Менделеев писал [18, с. 145] о величине нх эквивалента Ошибку в определении можно ждать еще и потому, что в чистоте препаратов нет возможности убедиться чем-либо киым, как М]Югократною кристаллизациею, а она, как известно, не всегда служит для отделения от изоморфных примесей . [c.83]

    Гидроокись скандия отличается от других гидроокисей как по кристаллической структуре, так и по некоторым другим свойствам, что может быть использовано для отделения скандия от сопутствующих элементов. Она может осаждаться при более низком pH, нежели гидроокиси РЗЭ (pH 6,3 и более), 2г, Th, Ti и др., гидроокиси которых осаждаются при более низком pH (1,0—3,0). Это существенно облегчает разделение. 8с(ОН)з имеет структуру гранецентрированной призмы (ГЦП), а = 7,882. При нагревании до 200—260° разлагается на моногидроокись S O(OH), аналогичную АЮ(ОН). S O(OH) устойчивее, чем А10(0Н) [401, имеет орторомбическую структуру, а =4,01, Ь = 13,01, с = 3,24 [6] при 310—380° превращается в окись скандия S 2O3. Соединение S 0(0H) легко растворяется в концентрированном застворе NaOH из раствора кристаллизуется Ыаз[5с(0Н)б]-2Н20 3]. [c.5]

    Двойные сульфаты скандия и аммония или натрия хорошо растворяются в воде и концентрированных растворах (N1 4)2804, N32804. Кз[8с(804)з1 практически нерастворим в растворе K2SO4, и его предложено использовать для отделения скандия от элементов иттриевой подгруппы. Кз[У(804)в1 растворяется значительно лучше (в 30 раз больше), чем Кз[8с(804)з]. [c.6]

    Роданиды скандия. Роданид 8с(СЫ8)з получается взаимодействием сульфата скандия с роданидом бария. Известно также соединение Н8с (СЫ8)4- То и другое вещество используется для отделения скандия при экстракционном способе. 8с(СЫ8)з с роданидами щелочных металлов образует ряд комплексных соединений [28]. Их получают взаимодействием раствора 8с2(804)з и Мв2804 (где Ме — Ы, Ыа, К, ЯЬ, Сз) с раствором Ва(СЫ8)г в соотношении 8с + Ме+ СЫ8" = [c.9]


    Методы отделения и очистки скандия от примесей. Получение чистых соединений скандия — весьма сложная задача. Это связано с тем, что скандий практически не имеет собственных руд и извлекается из комплексного сырья, содержащего много сопутствующих элементов в количествах, значительно превосходящих его содержание. Особенно большие трудности возникают при отделении от скандия РЗЭ иттриевой подгруппы, алюминия, железа, циркония, гафния и тория. Это связано с близостью ионных радиусов и ряда других свойств (см. табл. 6). [c.18]

    Для отделения скандия от кальция и магния можно использовать не только различие в pH осаждения их гидроокисей (табл. 7) [13]. но и выщелачивание гидроокисей 20%-ным раствором (МН гСОз, что дает возможность извлекать в раствор и эффективно отделять 8с как от больших, так и от малых количеств примеси Са и Mg [6]. [c.19]

    Отделение содой или карбонатом аммония. Способность карбоната скандия растворяться в избытке раствора На2СОз или (ЫЙ4)2СОз, [c.20]

    Изучение условий извлечения скандия карбонатными растворами рис. I) позволило рекомендовать проводить процесс отделения от Ре и Мп при комнатной температуре [17]. Для отделения от Ре, Мп, А1 и Са можно использовать также способность гидроокиси скандия растворяться в растворах соды и карбоната аммония. На рис. 2 приведены кривые растворимости 5с(ОН)з в растворах (МН4)гСОз. Они указывают на понижение растворимости 5с(ОН)з с повышением температуры и увеличение растворимости — с ростом концентрации (МН гСОз [21]. Для более полного извлечения скандия рекомендуется исходный раствор с концентрацией окислов 15—25 г/л нейтрализовать содой или аммиаком до pH 2, а затем постепенно, перемешивая, вливать его в равный объем 20%-ного раствора соды при комнатной температуре. После отделения осадка примесей раствор подкисляют соляной кислотой, кипятят для удаления СОг и аммиаком осаждают гидроокись скандия [21]. [c.21]

    Чтобы выделить скандий из бедных растворов, в качестве осадителя рекомендуется применять фториды и кремнефториды натрия, калия, плавиковую кислоту и кремнефтористоводородную кислоту. Для достаточно полного осаждения скандия необходимо вводить большой избыток осадителя. При отделении от циркония целесообразно использовать K2[SiFe] или KF, так как образующийся K2[ZrFe] хорошо растворяется в воде (25% при 100°) и легко отделяется от скандия [2, стр. 75]. [c.22]

    Прочие методы осаждения. Чтобы отделить скандий от циркония, рекомендуется использовать осаждение малорастворимого арсената циркония или иодата циркония [24]. От циркония и тория скандий можно отделять в виде фталата Зс2(С8Н404)з [25]. С целью концентрирования и отделения от некоторых примесей ряд авторов рекомендуют выделять скандий в виде малорастворимых пирофосфата и фитата [22]. [c.23]

    Получение чистых препаратов ионным обменом со смолой в Си +-фор-ме (метод Сиеддинга [31]), обычно применяющимся для разделения РЗЭ, в отношении скандия не нашло применения он вымывается вместе с медью, что вызывает необходимость дополнительной очистки его от меди [32]. Для отделения скандия от РЗЭ и ТЬ, а также от таких примесей, как 2г, Ре, Т1, А1, Са, можно проводить сорбцию на катио- [c.26]

    Можно отделить скандий от Y, РЗЭ, Th, U и на анионитах [34]. Скандий хорошо сорбируется анионитами из растворов, содержащих 1 моль/л HF и переменное количество НС1, что дает возможность использовать фторидные растворы для отделения скандия от Th, Al и РЗЭ. При десорбции 4—8 М растворами НС1 дополнительно удается отделить скандий от Fe +, Sn, Nb, Та, U [34]. Для отделения от V, As, Ti проводят адсорбцию на анионитах из 0,5—2,5 М растворов noHF. Десорбируют скандий 15-молярной плавиковой кислотой выход 90— 100%. Для очистки от Си +, Со +, Zn " " и d + рекомендуется адсорбировать скандий на анионитах из сильнокислой среды [35]. От тория и урана можно отделить скандий на анионитах в связи с тем, что коэффициент распределения его меньше, чем у них. Адсорбируют из 2—3 М раствора нитрата магния на сильноосновном анионите. Десорбируют скандий раствором нитрата магния, а урана и тория — 2,4 М соляной кислотой. Уран и железо отделяются от скандия также и при адсорбции из солянокислых растворов на сильноосновном анионите, обработанном предварительно 7 М НС1 [2, стр. 109]. [c.27]

    Для отделения скандия от железа, также хорошо экстрагирующегося ТБФ, применяется реэкстракция его нитратом магния. С этой целью промывают несколько раз раствором Mg(N0a)2 органическую фазу железо переходит в водную фазу, скандий остается в органической фазе [38], откуда его вымывают водой или разбавленными (не выше 4 н.) кислотами. При экстракции скандия ТБФ из солянокислой среды, помимо перечисленных элементов, он отделяется и от А1, коэффициент распределения которого 0,03—0,05 и не зависит от концентрации кислоты [2, стр. 107]. При значительном содержании кальция в растворе он может переходить в органическую фазу в связи с тем, что его а (0,1) выше, чем а алюминия. Для отделения кальция в таких случаях промывают органическую фазу концентрированной кислотой [2, стр. 107]. [c.29]

    Для очистки от циркония рекомендуется экстрагировать ТБФ из 3—4 н. солянокислого раствора, насыщенного NH4 I. Скандий при этом остается в водной фазе [40]. Для отделения от тория проводят экстракцию ТБФ из 2 н. HNO3 экстрагируется только торий. Чтобы повысить степень извлечения тория в органическую фазу, в качестве высаливателя вводят нитрат аммония [41]. При использовании ТБФ и ДААФ для экстракционного извлечения скандия из бедных растворов рекомендуется вводить высаливатели (хлориды Са, Mg, Li). [c.29]

    Технология переработки скандийсодержащего сырья. Соединения скандия, а тем более металл, до настоящего времени получают в ограниченных масштабах, не выходящих, как правило, из рамок полупромышленных. Большинство предложенных методов реализовано в лабораторных условиях и лишь некоторые получили промышленное применение. Многие предложения о переработке сырья относятся к такому редкому минералу, как тортвейтит, и, естественно, не могут считаться перспективными. Однако следует рассмотреть эти методы, так как они дают возможность проследить возможные пути отделения скандия от многих примесей и оценить эффективность отдельных операций. [c.30]

    При переработке таких солянокислых растворов, содержащих значительное количество Ре и Мп, рекомендуется осаждать скандий в виде малорастворимого фторида, вводя при pH 2 кремнефторид натрия [51]. Осадок5сРз, содержащий также Са, А1, РЗЭ, Т], Мп, обрабатывают серной кислотой, а затем проводят водное выщелачивание. Часть кальция при этом остается нерастворимым в виде Са504. Для отделения от большого количества алюминия и остатков кальция осаждают гидроокиси, вводя ЫаОН при pH 10. Указанные примеси в этих условиях остаются в растворе. В осадок вместе с гидроокисью скандия выделяются Т1, Мп и другие примеси. Для очистки от Т1, Мп, остатков А1 осадок гидроокисей растворяют в соляной кислоте и осаждают скандий щавелевой кислотой. Прокаливая при 600°, оксалаты переводят в окиси. После растворения в соляной кислоте, осаждения гидроокиси и прокаливания ее получают концентрат, содержащий 30% Зс Оз и 70% Ьп Оз с общим извлечением из исходного шлака 76%. Схема процесса приведена на рис. 12. [c.39]

    Термодинамические данные, обосновывающие процесс восстановления, приведены в гл. П. Процесс обычно ведут в тиглях из тугоплавкого металла (Та или Мо), иногда в графитовых тиглях, выложенных внутри молибденом. В связи с тем, что скандий и шлак разделяется на два слоя лишь при 1500—1600°, а по некоторым данным при 1650°, фторид скандия восстанавливают вначале при 850°, повышая в конце процесса температуру до 1б00°. После отделения от шлака металл переплавляют в вакууме (10 мм рт. ст.) для удаления остатков летучих примесей [55, 56]. Сохраняя тот же вакуум, возгоняют скандий при 1650—1700°. Общий выход чистого металла достигает 95%. В некоторых случаях в слитках скандия содержится от 3 до 12% Са. Очищать [c.42]

    Кроме аммиака, катионы этих элементов образуют комплексы с пиридином СзНаМ, метиламином, этилендиамином, которые также можно использовать для их отделения. Катионы Мп + и Ре + (образующие с ними комплексы) не мешают, так как отделяются раньше в 5-й группе катионов по кислотно-щелочному методу. Полезно сопоставить сероводородный и кислотно-щелочной методы (см. табл. 36). В сероводородном методе анализа используется сходство свойств переходных металлов по горизонтальному направлению от скандия до цинка (их одинаковое отношение к сульфиду аммония). При осаждении 4-й группы используется способность ряда элементов образовывать сульфиды (тиооснования) и при растворении 5-й группы — способность ряда элементов образовывать тиоангидриды. В кислотнощелочном методе анализа для разделения тех же катионов используются в основном амфотерность гидроокисей и способность некоторых из них образовывать аммиачные комплексы. [c.191]

    Примерно 1 г окиси растворяют в НС1 и упаривают на водяной бане. Полученную влажную кристаллическую массу растворяют в 60 ма 0,5 N НС1 добавляют 53 г NH4 NS, после чего объем раствора доводят до 100 МА и экстрагируют роданид скандия равным объемом эфира. После отделения органической фазы повторяют операцию еще два раза. Концентрацию кислоты прн каждой экстракции поддерживают постоянной, что достигается добавлением 5 мл 2 N НС1 перед экстракцией. [c.125]


Смотреть страницы где упоминается термин Скандий отделение: [c.386]    [c.406]    [c.7]    [c.11]    [c.11]    [c.12]    [c.19]    [c.28]    [c.30]    [c.59]   
Практическое руководство по неорганическому анализу (1966) -- [ c.614 ]

Методы аналитической химии Часть 2 (0) -- [ c.0 ]

Практическое руководство по аналитической химии редких элементов (1966) -- [ c.65 , c.67 , c.69 , c.70 ]

Практическое руководство по неорганическому анализу (1960) -- [ c.561 , c.562 ]

Методы аналитической химии - количественный анализ неорганических соединений (1965) -- [ c.812 ]




ПОИСК





Смотрите так же термины и статьи:

Скандий



© 2025 chem21.info Реклама на сайте