Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Линии спектральные элементов

    Совпадения спектральных линий даны для наиболее употребительных аналитических линий каждого элемента. Элементы (в том числе дейтерий и тритий) расположены в алфавитном порядке их русских названий. Приводятся все известные спектральные линии, которые могут вызвать ошибку в идентификации соответствующей аналитической линии. [c.648]

    Качественный анализ может быть выполнен и в обратном порядке. По таблице (дисперсионной кривой прибора) находят отсчеты по шкале микрометрического винта призмы для трех илп четырех спектральных линий идентифицируемого элемента. Присутствие каждой линии в спектре проверяют экспериментально устанавливают микрометрический винт в отсчетное положение и затем, наблюдая спектр через окуляр, отмечают присутствие или отсутствие линии на левом краю рамки. Ек ли спектральная линия имеет небольшую яркость и ее присутствие вызывает сомнение, то микрометрическим винтом несколько сме-ш,ают спектр влево, наблюдают линию в спектре и снова устанавливают ее в отсчетное положение. Затем сверяют полученный отсчет с табличным. Расхождение не должно превышать [c.22]


    Метод, основан на получении эмиссионных спектров анализируемого вещества на фотографической пластинке, помещенной в фокальной плоскости камерного объектива спектрального прибора (спектрографы различных типов). Спектральные линии элементов (качественный анализ) в полученном спектре идентифицируют относительно спектра известного элемента (обычно железа), фотографируемого рядом со спектром анализируемого вещества. В специальных атласах спектральных линий приведены фотографии спектров л<елеза, где относительно спектральных линий железа указано положение спектральных линий всех элементов с их длинами волн. Для проведения качественного анализа используют спектропроекторы или измерительные микроскопы. Количественный анализ проводят по результатам измерения относительных почернений спектральных линий гомологической пары и их сравнением с соответствующими величинами стандартных образцов. Почернения спектральных линий измеряют при помощи микрофотометров фотоэлектрическим способом. [c.25]

    По таблицам спектральных линий установить длину волны наиболее чувствительной спектральной линии искомого элемента и планшет атласа, где она находится. [c.31]

    Спектр атомного поглощения элемента проще эмиссионного, так как состоит только из спектральных линий резонансной серии. В то же время среди линий резонансной серии имеются такие, которые в спектре эмиссии отсутствуют вследствие высоких потенциалов их возбуждения. Последние спектральные линии некоторых элементов (Со, Сг) смещены в спектре абсорбции в более коротковолновую область по сравнению с наиболее яркой эмиссионной спектральной линией. [c.49]

    Выражение для относительной интенсивности спектральных линий двух элементов можно записать в виде  [c.55]

    Следующим этапом обучения является освоение техники фотографического спектрального анализа. Здесь в первую очередь необходимо приобрести навыки фотографирования спектров и получения качественных снимков. Параллельно с этим стоит затратить определенные усилия на расшифровку спектра железа, который во многих задачах спектрального анализа играет роль опорного при отождествлении спектральных линий других элементов. Приобретенные при этом навыки оказываются необходимыми при выполнении качественного анализа порошкообразной пробы на присутствие металлов. [c.93]


    Спектр железа имеет большое число линий ( 4700 в видимой и УФ-об-ластях), более или менее равномерно распределенных по всему регистрируемому фотографическим способом диапазону длин волн. Спектр железа хорошо изучен. Длины волн его линий определены с необходимой точностью. Поэтому при решении задач качественного анализа спектр железа играет роль опорного для отождествления спектральных линий других элементов. Для быстрой ориентировки в спектре железа необходимо знать и по.мнить положение и вид характерных групп линий в разных областях спектра. Характеристики некоторых из них даны в табл. 3.3. [c.106]

    С 20-х годов XX в. начинает интенсивно развиваться количественный эмиссионный спектральный анализ благодаря использованию предложенного В. Герлахом (1924) метода гомологической пары линий. В качестве аналитического сигнала в этом методе использовалась относительная интенсивность спектральной линии определяемого элемента. С 1945 г. для измерения интенсивности спектральных линий стал применяться фотоэлектрический метод. Несколько раньше были сконструированы спектрофотометры с фотоэлектрической регистрацией интенсивности света для исследования и анализа растворов. Заметно прогрессирует метод фотометрии пламени, который в настоящее время стал иметь большое практическое значение. [c.11]

    Нахождение в спектре пробы линий заданного элемента. Выписывают из таблицы спектральных линий (см. приложение 1) наиболее чувствительные ( последние ) линии искомого элемента. С помощью дисперсионной кривой и планшетов спектральных линий на спектропроекторе находят в спектре железа те линии, между которыми должны располагаться выписанные последние линии. Измеряют [c.203]

    СПЕКТРАЛЬНЫЙ АНАЛИЗ (эмиссионный)—физический метод качественного и количественного анализа состава вещества, основанный на изучении спектра паров исследуемого вещества. Наличие в спектре характерных линий для данного элемента свидетельствует о присутствии этого элемента в анализируемом веществе (качественный анализ). Интенсивность линий спектров элементов служит мерой концентрации их (количественный анализ). С. а. простой, быстрый, не требует сложной подготовки и большого количества проб. В навеске 10—30 мг можно определить большое число элементов. С. а. чувствителен, его широко используют в химии, астрофизике, металлургии и т. п. С. а. предложен в 1859 г. Г. Кирхгофом и Р. Бунзеном. [c.234]

    Идентификация спектральных линий известного элемента. С помощью данных табл. 1 идентифицируют поочередно все спектральные линии вводимого в разряд элемента и регистрируют их положение в спектре по шкале отсчетного барабана. Затем отключают прибор от сети, поочередно заменяют оба электрода на новые и проводят идентификацию и измерение положения спектральных линий в спектре следующего известного элемента. [c.21]

    Качественный анализ может быть выполнен и в обратном порядке. По таблице (дисперсионной кривой прибора) находят отсчеты по шкале микрометрического винта призмы для трех или четырех спектральных линий идентифицируемого элемента. Присутствие каждой линии в спектре проверяют экспериментально устанавливают микрометрический винт в отсчетное положение и затем, наблюдая спектр через окуляр, отмечают присутствие или отсутствие линии на левом краю рамки. Если спектральная линия имеет небольшую яркость и ее присутствие вызывает сомнение, то микрометрическим винтом несколько смещают спектр влево, наблюдают линию в спектре и снова устанавливают ее в отсчетное положение. Затем сверяют полученный отсчет с табличным. Расхождение не должно превышать 1—2 десятых деления шкалы. При качественном анализе раствора, содержащего несколько катионов, необходимо учитывать возможность взаимного наложения в спектре линий разных элементов. [c.22]

    Установить присутствие спектральной линии искомого элемента в спектре стали. Она должна совпадать с указательным штрихом, нанесенным на планшете выше спектра железа. [c.31]

    При определении примесей в качестве линий сравнения можно использовать спектральные линии основных элементов пробы, так как при высоких концентрациях элемента его малоинтенсивные линии не испытывают влияния концентрационных колебаний в пределах долей процента. Например, при анализе [c.32]

    Ниже указаны длины волн (в нм) некоторых спектральных линий атомов элементов главных подгрупп I и II групп [c.30]

    Важное значение в определении закономерностей расположения электронов в атоме имели периодическая система и изучение оптических (атомных) спектров. К началу XX в. накопился огромный материал по измерению длин волн спектральных линий различных элементов и систематизации их в серии. Были установлены отдельные эмпирические закономерности, из которых следовало, что спектр характеризует каждый элемент, т. е. является такой же фундаментальной характеристикой элемента, как и его порядковый номер в периодической системе. Спектроскопические исследования показали, что химические аналоги являются аналогами и в спектральном отношении. [c.51]


    Количественный эмиссионный спектральный анализ основан на зависимости, существующей между интенсивностью (яркостью) спектральных линий определяемого элемента и его концентрацией. Другими словами, мерой концентрации данного элемента в исследуемой пробе является интенсивность линий спектров паров определяемого элемента. [c.224]

    Основы качественного спектрального анализа изложены ранее (см. книга I, гл. III, 9). Интенсивность линий спектра элемента зависит от концентрации этого элемента в исследуемой пробе, поэтому с уменьшением концентрации интенсивность многих линий настолько уменьшается, что их нельзя различить. Для открытия элементов пользуются так называемы.ми аналитическими линиями, или последними линиями- , которые можно обнаружить в спектре исследуемой пробы при предельно малой концентрации открываемого элемента. Например, последней линией в спектре натрия является линия, длина волны (л) которой равна 5890 А. Эта линия исчезает в спектре исследуемой пробы, когда концентрация натрия становится меньше 10 %. Перечень линий всех элементов приведен в спектральных атласах. [c.225]

    Качественный спектральный анализ можно проводить визуальным и фотографическим методами. Последние линии определяемого элемента в визуальном методе отыскивают при помощи стилоскопа (см. 12). [c.225]

    Включают дугу и наблюдают спектр в окуляре стилоскопа. В поле зрения окуляра стилоскопа имеется неподвижная стрелка (индикатор), к которой поворотом барабана длин волн подводят все интенсивные линии спектра. Отмечают показания шкалы барабана (деления барабана). При помощи таблицы спектральных линий (табл. 6) элементов определяют по цвету длину волны линий взятого элемента. [c.234]

    Микрофотометрирование. Для определения железа в пробе кварцевого песка берут линию спектра железа Я = 2510 А. В качестве линии внутреннего стандарта берут линию в спектре кремния Я = 2503 А. При помощи планшета № 10 атласа спектральных линий находят линию кремния (элемент сравнения) I = 2503 А и линию железа X = 2510 А. На микрофотометре МФ-2 определяют величину плотности почернения 5ре линии железа и величину плотности почернения 5з1 линии кремния, затем находят их разность А5 А5 = 5ре — 5з1. [c.241]

    При количественном анализе проводят сравнения интенсивностей спектральных линий определяемых элементов с интенсивностями тех же самых линий в спектрах стандартных образцов,содержащих определяемые элементы в известных концентрациях. [c.4]

    В основе большинства современных методов количественного анализа лежит измерение относительной интенсивности спектральных линий определяемого элемента и элемента сравнения, находящегося в той же пробе. Это вызвано тем, что интенсивность спектральной линии зависит от ряда неконтролируемых процессов (изменения условий испарения пробы и возбуждения спектров во время проведения анализа, регистрирующего устройства и др.). [c.106]

    Интенсивность спектральных линий растет с увеличением концентрации элемента в пробе. Поэтому для проведения количественного анализа нужно найти интенсивность одной спектральной линии определяемого элемента. Интенсивность линии измеряют или по ее почернению на фотографии спектра (спектрограмме) или сразу по величине светового потока, выходящего из спектрального аппарата. Величину почернения линий на спектрограмме определяют на микрофотометрах. [c.8]

    Число линий в спектрах. В настоящее время измерены длины волн многих спектральных линий всех доступных элементов — несколько сотен тысяч линий, В таблицах обычно приводят только часть известных линий, с которыми приходится встречаться в лабораторной практике. Так, в таблицах спектральных линий (см. список литературы), которыми обычно пользуются спектроскописты в нашей стране, приведено около 60 ООО линий. Кроме того, там дан список последних и других наиболее интенсивных линий всех элементов и потенциалы возбуждения для многих спектральных линий. [c.41]

    Вакуумный квантометр ДФС-31. Другой тип квантометра ДФС-31 рассчитан для работы в более коротковолновой области (1600 — 3300 А), где расположены интенсивные спектральные линии многих элементов. Воздух сильно поглощает излучение в области короче 1850 А, поэтому корпус прибора откачивается механически насосом до давления 0,01 мм рт. ст., а штатив для электродов продувается током аргона, так как дуговой разряд не возникает при низком давлении. Прибор имеет десять выходных щелей и фотоумножителей (приемники света) два из них рассчитаны на работу в области короче [c.150]

    В видимой области спектра лежат яркие линии многих элементов, и визуальный метод находит достаточно широкое применение в эмиссионном спектральном анализе. [c.154]

    В апреле 1914 г. Мозли опубликовал результаты исследования 39 элементов, от 1зА1 до 7,Ли. (Напомним, что порядковый номер элемента указывается индексом слева внизу от символа элемента.) Часть полученных им данных воспроизводится на рис. 7-2. Мозли писал Спектры элементов представляют собой равноотстоящие друг от друга горизонтальные линии. Выбранная последовательность расположения элементов соответствует возрастанию их атомных весов (масс), за исключением случаев Аг, Со и Те, когда она не согласовывалась с последовательностью изменения их химических свойств. Между элементами Мо и Ки, а также между Nd и 8т и между XV и Оз остаются вакантные места для спектральных линий, но элементы, которым могли бы соответствовать линии в этих местах, неизвестны... Все это эквивалентно тому, как если бы мы приписали последовательным элементам ряд характеризующих их последовательных целых чисел... Тогда, если бы какой-либо элемент не удавалось охарактеризовать такими числами или произошла ошибка в составлении последовательности элементов либо в нумерации мест, оставленных для еще неизвестных элементов, установленная закономерность (прямолинейная зависимость) оказалась бы сразу же нарушенной. Это позволяет на основании одних лишь рентгеновских спектров заключить, не пользуясь никакой теорией строения атома, что указанные выше целые числа действительно могут характеризовать элементы... Недавно Резерфорд показал, что наиболее важной составной частью атома является расположенное в его центре положительно заряженное ядро, а Ван-ден-Броек выдвинул предположение, что заряд этого ядра во всех случаях представляет собой целочисленное кратное от заряда ядра водорода. Есть все основания предполагать, что целое число, определяющее вид рентгеновского спектра [элемента], совпадает с числом единиц электрического заряда в ядре [его атомов], и, следовательно, данные эксперименты самым серьезным образом подтверждают гипотезу Ван-ден-Броека . [c.312]

    Выпускают фотоэлектрические спектрометры двух типов сканирующие и многоканальные. Приборы первого типа имеют на выходе щель, иа которую последовательно выводят аналитические линии всех определяемых элементов, что ограничивает скорость анализа. Для одновременного определения содержания всех элементов в анализируемой пробе необходимо из спектра выделить соответствующее число линий разных элементов. Для этого в фокальной поверхности спектрального прибора устанавливают соответствующее число выходных щелей. Прибор такого типа называют иолихроматором или кваитометром. [c.70]

    Визуальные способы регистрации спектров используют при стилоскопических и стилометрических исследованиях состава материалов, главным образом металлов. В первом случае производят визуальное сравнение интенсивностей спектральных линий определяемого элемента и близлежащих линий из спектра основного компонента пробы. В силу особен ностей глаза как приемника излучения с достаточной точ" иостью можно только установить либо равенство интенсивно стей соседних линий, либо выделить наиболее яркую линию из [c.74]

    При работе со стилоскопом нужно уметь быстро иаходить в спектре те или иные спектральные линии различных элементов. Наиболее просто это можно делать, зная дисперсионную кривую прибора. Для построения дисперсионной кривой используют спектры элементов с большим числом спектральных линий, длины волн которых известны. [c.97]

    Оптическая схе1у4а прибора. Оптическая схема анализатора ПАЖ-1 позволяет сконцентрировать световой поток, излучаемый пламенем, на светочувствительную поверхность фотоэлемента, скомпенсировать спектральные помехи и выделить спектральную линию определяемого элемента (рис. 14). Для определения каждого из четырех элементов (натрия, калия, лития и кальция) в приборе ПАЖ-1 применяется один вакуумный фотоэлемент Ф-9. [c.27]

    Чувствительность определения некоторых элементов методом фотометрии пламени незначительна, поскольку аналитические линии этих элементов лежат в ультрафиолетовой области спектра. Поэтому для возбуждения этих спектров требуется энергия, значительно превышающая энергию частиц в пламенах. Действительно, чтобы наблюдать линию испускания в ультрафиолетовой области, необходимо иметь достаточное число частиц, находящихся на начальном высоковозбужденном уровне энергии Е (длина волны линии обратно пропорциональна разнице энергий начального и конечного уровней перехода Х=кх1Е — Е2). Для метода атомной абсорбции важна заселенность нижнего, основного уровня, поэтому на чувствительность определения не влияет спектральная область, где лежат аналитические линии определяемых элементов. [c.37]

    Измерение относительных интенсивностей спектральных линий обиаруженпых элементов позволяет оценить их количественное содержание. Количественный эмиссионный анализ основан на прямолинейной зависимости, существующей между интенсивностью спектральных линий определяемого элемента и содержанием его в исследуемой пробе. [c.182]

    В качестве внутреннего стандарта при спектрографическом методе анализа веществ на примесные элементы часто используется фон в спектре. В этом случае иптепсивиость фона измеряется справа и слева от спектральных линий определяемого элемента, а затем усредняется. [c.94]

    Можно измерять температуру источника света и контролировать ее постоянство по относительной интенсивности спектральных линий. Для этого удобнее всего взять две линии одного элемента с разными потенциалами возбужде1шя (фикспара). Часто в качестве фикспары берут искровую и дуговую линии одного элемента. Относительная интенсивность R линий фикспары зависит только от температуры источника  [c.52]

    Последовательное определение различных элементов увеличивает продолжительность анализа и создает ряд других трудностей. Поэтому в настоящее время большое распространение получили фотоэлектрические приборы — квантометры, в которых все нужные элементы определяются одновременно. Для этого необходимо выделить значительное число (до нескольких десятков) аналитических спектральных линий разных элементов. Поэтому в фокальной поверхности спектрального аппарата устанавливают много выходных щелей. Такие приборы называют полихроматорами. Впрочем, название поли-хроматор относят часто не только к спектральному аппарату с несколькими выходными щелями, но и ко всему квантометру. [c.145]


Смотреть страницы где упоминается термин Линии спектральные элементов: [c.13]    [c.22]    [c.143]    [c.13]    [c.22]    [c.98]    [c.201]   
Физико-химичемкие методы анализа (1964) -- [ c.369 ]

Физико-химические методы анализа Издание 2 (1971) -- [ c.369 ]

Физико-химические методы анализа (1964) -- [ c.369 ]

Физико-химические методы анализа (1971) -- [ c.369 ]




ПОИСК







© 2025 chem21.info Реклама на сайте