Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сурьмы арсениде

    Выделение определяемого элемента соосаждением с коллектором применяется при определении мышьяка в сурьме (соосаждение с фосфатом магния) [12], селена в индии, сурьме, арсениде галлия и теллура в индии, мышьяке и арсениде галлия (соосаждение в виде элементарного с мышьяком) (см. настоящий сборник, стр. 150, 153). Этот способ менее удобен, чем экстракция, так как приходится считаться с мешающим дальнейшему определению влиянием коллектора и загрязнений, попавших в осадок за счет адсорбции, окклюзии и т. п. [c.131]


    Упомянутые выше расчеты показали, что выигрыш в чувствительности определения примесей может быть достигнут за счет увеличения отношения интенсивности аналитической линии к интенсивности сплошного фона спектра. Это реализуется при применении спектрографов с большой разрешающей силой. Переход на такой прибор позволил повысить чувствительность определения таллия в индии в 3 раза. Многие методики прямого спектрального анализа чистых веществ (сурьма, арсенид галлия, висмут) и химико-спектрального (мышьяк, галлий, хлорид сурьмы и др.) были переориентированы на работу со спектрографами с большой разрешающей силой. Чувствительность определения некоторых примесей составляет 10 —10 % вместо 10 —10 %, получаемой ранее. [c.9]

    Фосфор, мышьяк, сурьма используются для получения примесных полупроводников (/1-типа) германия и кремния, для синтеза соединений А " В — арсенид галлия ОаАз, фосфид индия 1пР и др. [c.233]

    Как и индий, таллий образует с мышьяком, сурьмой и германием соединения с полупроводниковыми свойствами. Сульфид таллия, подобно арсениду индия, может служить детектором инфракрасного излучения. [c.160]

    Элементы подгруппы мышьяка непосредственно не взаимодействуют с азотом, водородом и углеродом. Сурьма и висмут, кроме того, не реагируют с фосфором, кремнием и германием. При взаимодействии с металлами они образуют арсениды, стибиды и висмутиды, если этому благоприятствует соотношение металлохимических факторов. [c.287]

    Широкое применение в активационном анализе нашли хроматографические методы выделения и очистки марганца [539, 1220], например прп анализе арсенида галлия [175], жидких включений в рудах [916], сурьмы [13], фосфата натрия [981], алюминия [1167], циркония [1087], стали [1059], кремния и его соединений [255, 256, 1001[, биологических объектов [823, 1185], почв [1545], геологических материалов, метеоритов [1386]. [c.91]

    В качестве солеподобных соединений, в которых мышьяк, сурьма и висмут проявляют степень окисления —3, можно рассматривать арсениды, стибиды (антимониды) и висмутиды s-элементов I и II групп (КзЭ, СадЭа, М зЭ,2 и др.). В большинстве же других случаев при взаимодействии металлов с мышьяком, сурьмой и висмутом образуются соединения металлического типа. Стибиды и арсениды / -элементов и элементов подгруппы цинка — полупроводники. В ряду однотипных нитридов, фосфидов, арсенидов, стибидов и висмутидов ширина запрещенной зоны уменьшается, что свидетельствует об увеличении доли нелокализованной связи. Например  [c.381]

    Пниктогениды. К пниктогенидам относятся нитриды, фосфиды, арсениды и стибиды — соединения со степенью окисления элемента V главной подгруппы —3. В силу более высокой электроотрицательности и наименьшего радиуса атома азота среди нниктогенидов нитриды по своему составу и свойствам отличаются от производных фосфора, мышьяка и сурьмы, которые имеют и меньшее практическое значение. [c.342]


    Мышьяк, сурьма и висмут с металлами образуют непрочные соединения, аналогичные нитридам при обработке арсенидов, антимонидов и висмутидов растворами кислот можно получить гидриды— неустойчивые, очень ядовитые газообразные вещества АзНз (арсин), 5ЬНз (стибин) и BiHз (висмутин). Устойчивость газообразных гидридов снижается с ростом атомной массы висмутин наименее стоек и разлагается особенно легко. [c.184]

    Металлохимия элементов подгруппы мышьяка. Большинство арсенидов и стибидов s- и s/5-элементов являются полупроводниками, т. е. их нельзя рассматривать как интерметаллические соединения, а следовательно, мышьяк и сурьму — как металлы. В то же время арсениды и стибиды подавляющего большинства переходных металлов являются металлидами, в которых мышьяк и сурьма про- [c.297]

    Ванадий и его аналоги при повышенных температурах активно реагируют с фосфором, мышьяком и сурьмой. Все три металла, взаимодействуя с фосфором, образуют соединения двух типов монофосфиды ЭР и дифосфиды ЭР2, причем первые обладают металлическими свойствами, а вторые являются полупроводниками. Все известные арсениды и стибиды проявляют металлидный характер независимо 01 их состава. В еще большей мере это свойственно промежуточным фазам, образующимся при взаимодействии ванадия, ниобия и тантала с 5/ -элементами IV группы — 81, Се, 8п. [c.308]

    Продукты взаимодействия элементов подгруппы хрома с фосфором, мышьяком и сурьмой резко отличаются от галогенидов и халь-когенидов тем, что их формульный состав не отвечает правилам формальной валентности, т. е. фосфиды, арсениды и стибиды хрома и его аналогов принадлежат к классу аномально построенных дальтонидов, содержащих анион-анионные и катион-катионные связи. Наиболее характерны для фосфидов соединения состава ЭзР, ЭР и ЭРг- Образование моно- и дифосфидов вообще весьма характерно для переходных металлов. Для таких фосфидов при всем разнообразии их состава можно отметить общие закономерности, заключающиеся в том, что по мере увеличения относительного содержания фосфора понижаются температуры плавления, увеличивается склонность к термической диссоциации с отщеплением летучего компонента (фосфора), уменьшается ширина области гомогенности и при этом свойства меняются от металлических у фосфидов типа ЭзР и ЭР до полупроводниковых у высших фосфидов ЭР . [c.346]

    Нитриды железа, кобальта и никеля в отличие от нитридов предшествующих d-элементов фазами внедрения не являются. Об этом свидетельствуют их низкая термическая устойчивость и способность к последовательной диссоциации при иагревании с отщеплением азота и образованием все более бедных азотом соединений. Склонностью к термической диссоциации с последовательным отщеплением летучего компонента обладают также фосфиды и арсениды, причем первые — в большей степени. Для стибидов это свойственно в меньшей степени в силу небольшой летучести сурьмы. Фосфиды, арсениды и стибиды получают прямым синтезом из компонентов в эвакуированных и запаянных ампулах. Состав продукта зависит от исходного соотношения компонентов, температуры и давления пара летучего компонента в ампуле. Эти соединения разнообразны по составу, однако наиболее типичные фазы Э3П, Э2П, ЭП и ЭП. . Для кобальта и никеля известны фосфиды ЭР3. Высшие фосфиды ЭРз и ЭРз, а также арсенид FeAsj — полупроводники, остальные пниктогениды обладают полуметаллическими и металлическими свойствами. [c.407]

    При обычных температурах мышьяк сравнительно малоактивен, но при нагревании взаимодействует с водородом и кислородом, другими неметаллами. Например, в атмосфере хлора мышьяк (как и сурьма) сгорает, образуя трихлорид АзС ,,- С некоторыми металлами он образует соединения — арсениды, например арсениды кальция СазАзг и меди СизАз. [c.366]

    С металлами IA- и ПА-групп мышьяк, сурьма и висмут образуют соединения — арсениды, стибиды и висмутиды, например М зАзг, Сзз8Ь2, Mg3BI2, в котопых степень окисления As, Sb и Bi равна —3. Эти соединения взаимодействуют с разбавленными кислотами, например  [c.227]

    Металлохимия элементов подгруппы мышьяка. Большинство арсенидов и стибидов s- и sp-элементов являются полупроводниками, т.е. их нельзя рассматривать как интерметаллические соединения, а мышьяк и сурьму — как металлы. В то же время арсениды и стибиды подавляющего большинства переходных метгшлов являются металлидами, в которых мышьяк и сурьма проявляют себя как металлические компоненты. В этом и заключается своеобразие элементов подгруппы мышьяка, их двойственный характер. Висмут вследствие заметного металлического характера со всеми катионообразователями дает металлидные фазы. [c.425]

    Соединения мышьяка, сурьмы и висмута (—Ш). В качестве солеподобных соединений, в которых мышьяк, сурьма и висмут проявляют степень окисления -3, можно рассматривать арсениды, стибиды (антпи-мониды) VI висмутиды -элементов I и II групп (КдЭ, СадЭг, MgaSa и др.). В большинстве же других случаев при взаимодействии металлов с мышьяком, сурьмой и висмутом образуются соединения металлического типа. [c.412]

    Серебро, сурьма В пегматитовых и кварц-карбонатных жилах. Висмутин, касситерит, молибденит, галеиит, серебро, кастуран, берилл, арсениды N1 и Со [c.229]


    Методы ионообменной хроматографии используют для нейтронно-активационного анализа чистых веществ — алюминия [224, с. 277], двуокиси кремния и кварца [176], циркония [53], биологических образцов [136, с. 319, 321 224, с. 278], химико-спектральном анализе галлия и арсенида галлия [454], сурьмы [540], непту- [c.141]

    Броматометрическое титрование рекомендовано для определения мышьяка в рудах, концентратах и минералах [356, 1047], в сплавах с висмутом и селеном 1342], в селеномышьякопых продуктах [266], в сталях, сплавах и рудах, содержащих сурьму [987], черновом свинце [182], полупроводниковых соединениях бора с мышьяком [340], арсениде галлия [1083], инсектицидах [1080], металлах, растворимых в кислотах [988], растворах солей железа [96], продуктах, содержащих платиновые металлы [219]. [c.43]

    Метод отгонки мышьяка в виде трихлорида прост, надежен и позволяет выделять как макро-, так и микроколичества мышьяка из самых разнообразных материалов, в том числе из железа, чугуна и стали Г374, 552, 694, 986], сплавов на основе железа [380, 986], железных руд [373, 986], свинцово-цинковых концентратов [14, 375, 376], шлаков [986], горных пород и минералов [74, 781], платиновых металлов и продуктов их переработки [219], вольфрама и вольфрамового ангидрида [921], латуней [377], бронз [381], сурьмы J837], арсенида галлия [243] и арсенида индия [464]. [c.143]

    H2SO4 (конц.) Металлы (сурьма, олово), оксиды металлов, арсениды, ферротитан, органические соединения Окислитель, возможно разрушение стекла посуды [c.45]

    С мышьяком и сурьмой галлий также образует соединения состава 1 1 [1088]. Антимонид галлия легко получается сплавлением исходных элементов. Для получения арсенида такой синтез представляет серьезные трудности, так как при температуре плавления арсенида давление пара мышьяка очень велико. Еще в большей степени это относится к фосфиду. Поэтому последний лучше получать косвенным путем, например действием на металл фосфористого водорода при 900—950° С [445]. Прямой синтез GaP может быть осуществлен в расплаве висмута, используемого в качестве индифферентного растворителя [496]. GaN, GaP, GaAs, GaSb — устойчивы по отношению к кислороду и влаге воздуха и лишь с трудом разлагаются кислотами. От нитрида к антимониду наблюдается постепенное нарастание металлических свойств. Все эти соединения являются полупроводниками. [c.23]


Смотреть страницы где упоминается термин Сурьмы арсениде: [c.424]    [c.200]    [c.425]    [c.421]    [c.189]    [c.222]    [c.542]    [c.470]    [c.592]    [c.167]    [c.298]    [c.298]    [c.365]    [c.366]    [c.286]    [c.276]    [c.378]    [c.302]    [c.480]    [c.72]    [c.141]    [c.203]    [c.163]    [c.276]    [c.596]   
Аналитическая химия мышьяка (1976) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Арсениды



© 2025 chem21.info Реклама на сайте