Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Простой распад на две большие группы

    По характеру распада производные моносахаридов можно разделить на три большие группы ациклические производные, моноциклические производные и производные, содержащие несколько циклов. Наиболее просто протекает распад ациклических производных. Так, в масс-спектре пентаацетата арабита есть четыре фрагмента, отвечающие всем принципиально возможным первичным разрывам углеродной цепи  [c.69]


    III. 7. ПРОСТОЙ РАСПАД НА ДВЕ БОЛЬШИЕ ГРУППЫ [c.102]

    Применение групповых реагентов представляет большие удобства, так как при этом сложная задача анализа распадается на ряд более простых. Если же какая-либо группа полностью отсутствует, ее групповой реагент не даст с анализируемым раствором никакого осадка. В этом случае нет смысла проводить реакции на отдельные ионы этой группы, что экономит значительное количество труда, времени и реактивов. Таким образом, даже при наличии специфических реакций на все ионы систематический ход анализа не теряет своего значения, являясь более удобным и экономным по сравнению с дробным методом анализа веш,ества неизвестного состава. Наоборот, если состав вещества приблизительно известен (как это нередко бывает на практике) и требуется лишь установить наличие или отсутствие одной-двух примесей, удобнее открывать их дробными реакциями. [c.27]

    В связи с особой актуальностью охраны окружающей среды от загрязнения химическими реагентами большое внимание уделяется изучению способности ПАВ к биологическому разрушению в водной, почвенной и других средах. Биологическим разложением называют любое изменение (трансформацию) молекулы химического соединения, ведущее к упрощению структуры и изменению его различных свойств (физико-химических, токсикологических и др.) под влиянием живых организмов. Различают первичное и полное биологическое разложение. Так, гидрологическое отщепление от молекулы ПАВ активной сульфогруппы приводит к утрате веществом поверхностной активности, а с ней и способности к пенообразованию. В данном случае приемлемое для окружающей среды биоразложение совпадает с первичным разложением. Полное биоразложение — это распад вещества до простых неорганических соединений с образованием воды, углекислого газа, азота, аммиака и др. Известно, что алкилсульфаты разрушаются в результате гидролиза с образованием соответствующих спиртов которые окисляются до жирных кислот. В свою очередь последние подвергаются деструкции путем а- и р-окисле-ния. Вторичные жирные спирты (ВЖС) могут разлагаться по такому механизму ВЖС- спирт->кетон->оксикетон- дион альдегид-V кислота. Деструкция анионных ПАВ,, ведущая к потере поверхностной активности, может происходить либо путем отщепления от молекулы вещества гидрофильной группы, либо в результате последовательного окисления алкильного радикала. Отщепление гидрофильной, группы у синтетических алкилсульфатов, алкилсульфена-тов и алкиларилсульфенатов осуществляется в результате каталитического воздействия ферментов сульфатаз. [c.93]


    Существуют несколько типов различных диагностических таблиц, самыми простыми из которых служат дихотомические таблицы. Эти таблицы состоят из пронумерованных (1, 2, 3 и т. д.) парных утверждений, образующих ступень. Каждая ступень представляет определенный признак. Утверждения в одной паре должны быть противоположными и взаимоисключающими. Для определения таксономической принадлежности организма рассматривают эти пары утверждений по порядку. При этом большая группа организмов по мере перехода от одной ступени к другой последовательно распадается на все меньшие группы — и так до тех пор, пока не будет установлено, к какой таксономической группе относится данный организм. [c.17]

    Белковые вещества входят в состав протоплазмы и часто составляют больше половины ее массы. Общее содержание белков в растениях зависит от их принадлежности к тому или иному виду (см. табл. 4). В деревьях оно меньше и колеблется от 1 до 10%. Значительно больше белковых веществ в простых водорослях (20—30%), а в некоторых бактериях их содержание достигает 80%. Молекулярная масса различных белков колеблется в широких пределах от (17500 до 6800000). Изучение белков затруднено тем, что они представляют собой сложные смеси, выделение которых из растений в неизмененном виде почти невозможно. Основной способ выяснения их строения состоит в изучении продуктов их гидролитического распада, осуществленного с помощью минеральных кислот или оснований. Белковые вещества легко гидролизуются не только в присутствии кислот и оснований, но и под действием различных ферментов (протеаз, пепсина, трипсина и др.). При их распаде образуется смесь до 30 различных аминокислот. Большинство из них относится к группе аминокарбоновых кислот, а некоторые имеют ароматический и гидроароматический характер [10, с. 90]. [c.25]

    В большинстве процессов, механизм которых я изучал, всегда проявляется роль следов веществ, не участвующих в реакции, например роль следов кислорода или перекисей при термическом распаде паров органических веществ, роль ионных инициаторов при образовании полиацетальдегида. Известно, что одной из больших заслуг цепной теории является то, что она очень просто объяснила как инициирующую, так и ингибирующую роль малых количеств примесей (реакции с длинными цепями). Интересно, что аналогичные эффекты обнаруживаются в реакции совершенно другого типа, а именно в реакции горения угля, которой я совместно с большим числом сотрудников посвятил много работ, начиная с 1945 г. Следы минеральных загрязнений , содержащиеся в угле, значительно увеличивали скорость горения [54]. Есть ряд доводов в пользу того, что эти загрязнения действуют как переносчики кислорода попеременно, то окисляясь воздухом, то восстанавливаясь углем. Был обнаружен совсем удивительный факт оказалось, что достаточно иметь 5 мм рт. ст. паров воды в воздухе, чтобы уменьшить в 2 раза скорость горения угля высокой степени очистки (670°С) [55, 56]. Конечно, механизм ингибирования этой гетерогенной реакции должен быть совсем иным, чем механизм ингибирования реакций в газовой и жидкой фазах, объясненный ценной теорией. Инстинктивно, однако, старались найти в этой теории модель, которая могла бы объяснить описанные выше явления. При реакции в газовой фазе ингибитор хотя бы временно захватывает свободные радикалы — носители цепей и тем самым препятствует развитию всех звеньев цени, которые обычно рождают этот радикал. Вполне вероятно, что и при ингибировании горения угля парами воды последняя временно связывается с атомом или с группой атомов, благоприятно расноложенных в решетке кристалла для реакции. Вода закрывает этот атом от атаки кислорода и одновременно пре- [c.283]

    Здесь укажем только на тот факт, что изобутилен при малых концентрациях тормозит скорость распада пропана и бутана в два раза сильнее, чем пропилен при прочих равных условиях. Наиболее простое объяснение этому факту можно дать, если принять, что механизм торможения состоит в реакции отрыва активными радикалами (Н, НзС и др.) атома Н от метильной группы молекулы пропилена или изобутилена с образованием аллильных радикалов. Так как в изобутилене имеются две метильные группы, отрывом от которых атомов Н образуются аллильные радикалы, то и тормозящий эффект увеличивается в два раза. Можно предположить, что с накоплением СНз-групп в молекуле олефина будет увеличиваться тормозящее действие, оказываемое этим веществом как ингибитором. Если эта гипотеза верна, то следует ожидать, что триметилэтилен и тетраметилэтилен должны оказывать еще большее тормозящее действие, чем пропилен и [c.35]

    К тому, что между группами пиков образуются большие интервалы, необычные для соединений, в состав которых входят С, Н, N и О наличие таких спектров еще раз указывает на присутствие серы. Сходство химических характеристик азота и серы находит отражение в сходных направлениях распада соединений соответствующих структур. Перегруппировочные пики, аналогичные пикам Б спектрах кислородных соединений, могут в ряде случаев быть использованы для идентификации групп например, в спектрах часто встречаются ионы Нз5. Простые летучие соединения серы, такие, как ЗОг и СЗз, легко обнаруживаются и идентифицируются на основании измерения молекулярных ионов. В литературе нет большого числа данных о некоторых классах серусодержащих соединений, однако в ряде случаев даже небольшая имеющаяся информация, по сравнению с данными об углеводородах, позволяет показать, что рассмотренные выше общие закономерности распада справедливы и для этих соединений. [c.424]


    Дальний порядок, существующий во всем кристалле льда (за исключением дефектов), разрушается при плавлении. Однако при этом внутри небольших областей структура не исчезает полностью, молекулы сохраняют кристаллоподобную упорядоченность, а длина связи возрастает незначительно. Эти упорядоченные области не являются стабильными образованиями, поскольку они постоянно распадаются, перестраиваются и увеличиваются в размерах вследствие отрыва или присоединения мономерных молекул. Изучение функции радиального распределения показывает, что молекулы воды не являются плотноупакованными сферами, а образуют группы, имеющие тетраэдрическую симметрию (рис. 1.5), подобную структуре льда. При такой симметрии координационное число равно четырем, и структура получается гораздо более ажурной и рыхлой, чем плотноупакованная. Однако жидкую воду нельзя рассматривать просто как лед, содержащий, кроме структурных пустот, большое число вакансий и пустот, связанных с дефектами решетки. Простое увеличение числа вакансий в расчете на единицу количества вещества, т. е. понижение степени упорядоченности, обычно приводит к увеличению объема, в то время как при плавлении льда происходит уменьшение объема. Это показывает, что структура воды, хотя и остается еще довольно рыхлой, все же плотнее, чем структура льда. Как отмечает Самойлов [20], аналогичные явления могут происходить и в одноатомных жидкостях. Теоретическое рассмотрение их свойств позволяет сделать следующий вывод если упорядоченное расположение атомов в кристалле приводит к относительно малой плотности твердого вещества, то плавление, т. е. уменьшение упорядоченности, может привести к возрастанию плотности. Такое явление происходит, например, при плавлении Bi, Оа, Ое. [c.39]

    На примере а-Мп можно убедиться в том, что равноценность всех атомов в кристаллической структуре простого вещества не обязательна. В самом деле, 58 атомов Мп, приходящихся на одну ячейку, распадаются на четыре группы, или четыре сорта по 2, 8, 24 и 24 атома. Никакими симметрическими преобразованиями нельзя совместить атомы одного сорта с атомами других сортов. Это обстоятельство позволяет предполагать, что электронное состояние у этих атомов тоже различное. Как ни своеобразен структурный тип а-Мп, все же видно большое сходство его с нормальным и структурами металлов та же высокая симметрия (кубическая), те же большие координационные числа. Структура а-Мп имеет усложненный структурный тип объемноцентрированной кубической решетки. [c.255]

    Пиролиз. К этой группе можно отнести такие превращения метана, при которых основную роль играет его термическая обработка. Простейшим из них является термический распад метана на элементы, углерод и водород, представляющие значительно большую техническую ценность по сравнению с естественным газом углерод — в виде сажи, в крайнем случае — в виде беззольного кокса, водород — как сырье для процессов гидрогенизации, синтеза аммиака и т. п. Хотя распад метана на элементы [c.772]

    Применение групповых реагентов представляет большие удобства сложная задача анализа распадается при этом на ряд более простых. Кроме того, если какая-либо группа ионов полностью отсутствует, то ее групповой реагент не даст с анализируемым раствором никакого осадка. В этом случае не имеет смысла проводить реакции на отдельные ионы этой группы. В результате достигается значительная экономия труда, времени и реактивов. [c.24]

    Наличие функциональных групп приводит к образованию специфических перегруппировочных ионов, так как в этом случае распад требует затраты сравнительно небольшой энергии. Специфические перегруппировки, в отличие от случайных (более характерных для молекул с равномерным распределением плотности электронов), являются причиной наличия весьма интенсивных пиков перегруппировочных ионов в масс-спектрах. Простым примером специфической перегруппировки можно считать миграцию водорода при разрыве связи в р-ио-ложепии по отношению к электроотрицательной группе. Эта перегруппировка характерна для большого числа соединений различных классов и приводит к образованию весьма интенсивных пиков. Такие группы, как карбонильная (в альдегидах, кетонах, амидах, сложных эфирах), нитрильная, фосфатная, сульфитная, часто вызывают указанную специфическую перегруппировку с образованием максимального пика в спектре. Исключение представляет нитрогруппа. [c.112]

    Применение групповых реагентов представляет большие удобства, так как при этом сложная задача анализа распадается на ряд более простых. Если же какая-либо группа полностью отсутствует, ее групповой реагент не даст с анализируемым раствором [c.31]

    Несмотря на то что простые а. -ненасыщенные кислоты не имеют большого значения для биохимии, их производные часто являются промежуточными соединениями при синтезе и распаде длинноцепочечных жирных кислот, входящих в состав животных жиров (разд. 8.11). Ферментативные процессы распада суммированы в нижеприведенной схеме. Окисление (превращение в непредельное соединение) насыщенного ацилкофермента А проходит с образованием сложного эфира сопряженной ненасыщенной кислоты, который присоединяет элементы воды, возможно за счет нуклеофильной атаки. Образовавшийся р-гидрокси-ацилкофермент А окисляется в соответствующий р-оксоацилко-фермент А. Затем этот интермедиат расщепляется при взаимо-.действии с тиольной группой другой молекулы кофермента А. [c.259]

    Применение групповых реагентов представляет большие удобства, так как при этом сложная задача анализа распадается на ряд более простых. Если же какая-либо группа полностью отсутствует, ее групповой реагент не дает с анализируемым раствором никакого осадка. В этом случае нет смысла проводить реакции на отдельные ионы данной группы. Таким образом экономится значительное количество труда, времени и реактивов. Даже при [c.27]

    Применение групповых реагентов и осаждение элементов целыми группами имеет большое значение. Прежде всего сложная задача анализа катионов или анионов распадается на ряд более простых задач. Кроме того, если какая-нибудь группа катионов отсутствует, то групповой реагент укажет нам это. [c.16]

    Применение групповых реагентов и осаждение элементов целыми группами имеет большое значение. Прежде всего сложная задача анализа катионов или анионов распадается на ряд более простых задач. Кроме того, если какая-нибудь группа катионов отсутствует, то групповой реагент укажет нам это. Однако применение групповых реагентов во многих случаях связано с длительными [c.16]

    Изучению каталитической активности гемина было посвящено большое число работ [2]. Гемин является активным катализатором распада перекиси водорода и ряда окислительных процессов. Однако именно эти эксперименты показали особенно отчетливо, что активная группа, отделенная от своего носителя, обладает значительно меньшей активностью и весьма слабо выраженной избирательностью. Активность гемина в реакции разложения перекиси водорода можно увеличить при адсорбции его на угле. Адсорбция активирует гемин по отношению к определенным, но не всем, реакциям, в которых )н проявляет себя как катализатор. Простые ионы железа тоже активируются при адсорбции на угле. Такие системы можно рассматривать как простейшие и очень грубые модели ферментов, в которых уже более определенно намечены активная группа и носитель. [c.144]

    При. высоких температурах углерод взаимодействует с металлами, образуя карбиды (см. также гл. 1). Все карбиды представляют собой твердые, хорошо кристаллизующиеся вещества. Они нелетучи и не растворяются ни в одном из известных растворителей. В связи с этим истинные молекулярные веса карбидов неизвестны и их обычно обозначают простейшими формулами. По отношению к воде и разбавленным кислотам все карбиды распадаются на две большие группы — разлагаемые этими веществами и не разлагаемые ими. Карбиды первого типа следует рассматривать как продукты замещения металлом атомов водорода в ацетилене. Эти карбиды образуют главным образом активные металлы. Общая формула их такова МегСг для одновалентного металла, МеСг —для двухвалентного и МегСв — для трехвалентного. Межатомное, расстояние (С—С) в карбиде кальция равно 1,19 А. [c.40]

    Лигазы — это ферменты, катализирующие синтез сложных молекул из более простых за счет энергии распада аденозинтри-фосфата (АТФ) и его аналогов. К классу лигаз принадлежит большая группа ферментов. Ниже приведены отдельные наиболее простые реакции, катализируемые лигазами. [c.155]

    Полимер растворим в воде, в разбавленных растворах щелочей и кислот, нерастворим в ацетоне. При растворении нараформаль-дегида в горячей воде происходит его гидролиз и деполимеризация. В присутствии разбавленных кислот и щелочей скорость деполимеризации заметно повышается. В щелочной среде в реакцию вступают концевые гидроксильные группы и процесс деполимеризации представляет собой последовательное отщепление формаль-дегидиых групп с обоих концов линейной макромолекулы. В кислой среде гидролиз распространяется и иа простые эфирные связи в цепях макромолекул, вследствие чего большие макромо- текулы распадаются на осколки разных размеров. [c.399]

    Произведя исследования над различными группами органических сое-динений, В. Ф. Лугинин показал, что постоянная Троутона приблизительно постоянна для членов одного и того же гомологического ряда. Для углеводородов, эфиров и кетонов константа Kip в среднем равна 21.. Однако имеются случаи резкого отклонения от правила Троутона. Например, для спиртов, воды и уксусной кислоты /Стр соответственно равна 26,2 и 19,74. Исследования показали, что константа Троутона повышена у ассоциированных жидкостей. Это объясняется необходимостью затраты дополнительной работы на разложение перед испарением ассоциированных молекул жидкости в простые. Лугининым было также показано, что,, например, уксусная кислота в парах состоит отчасти из сложных частиц,, которые при нагревании распадаются на простые молекулы, и что, если эти уплотненные молекулы перевести в простые, то для уксусной кислоты Ктр окажется равной 26, 28. Работы в этом направлении были проведены также и М. С. Вревским [31]. Всесторонние исследования скрытых теплот испарения различных веществ показали, что когда жидкость в парообразном и жидком состоянии состоит из молекул с одинаковым молекулярным весом, то правило Троутона приложимо. Если же в жидкости молекулы более крупные, чем в парах (ассоциированные молекулы), то константа Троутона выше, т. е. теплота испарения больше, чем это следует по правилу Троутона. Наоборот, если молекулы в парах имеют большую плот- [c.131]

    При разложении простых третичных гидроперекисей обычно отщепляется бопее объемная группа, поэтому по аналогии следует ожидать распада полимерной цепи в точке разветвления. Гемолитическое разложение гидроперекисей [уравнение (XII1-4)] обусловливает образование большого числа радикалов, способных инициировать рост новых цепей [уравнение (XIП-5) и (XIII-6)] путем отщепления атома водорода от молекулы полимера. Было показано, что гемолитическое разложение гидроперекисей совпадает с автокаталитической стадией окисления простых углеводородов. [c.453]

    Некоторые масс-спектры приведены на рис. 82. Материал, летучий при температуре жидкого азота, был в основном представлен окисью углерода и содержал малое количество метана и следы сероводорода и хлористого водорода. Материал, летучий при температуре твердой углекислоты, в дополнение к указанным выше соединениям содержал бромистый водород, сероуглерод, двуокись серы, сероокись углерода и двуокись углерода. При комнатной температуре в газообразных продуктах был найден дихлорбензол, В дополнение были обнаружены следы бензола и ряд углеводородных осколков, характерных для распада конденсированных ароматических систем. Пик с массой 50 был необычайно велик. Некоторая часть твердого продукта, оставшегося в системе, была помещена в емкость, непосредственно соединенную с масс-спектрометром без промежуточного натекателя при этом для различных температур был получен ряд спектров, которые не позволили провести полной идентификации всех продуктов. Было идентифицировано лишь два соединения бензофенон и следы нафталина. Один из полученных спектров приведен на рис. 82. Из полученных результатов следует, что соединение содержало углерод, водород, кислород, серу, хлор и бром. Весь хлор представлен дихлорбензолом, наличие которого подтверждает существование бензольного кольца, замещенного двумя атомами хлора в исходном соединении. Бром был идентифицирован в виде бромистого метила, что указывает на наличие группы — СНгВг. Кислород и сера в подавляющем большинстве представлены СО, OS, СО2, SO2 и S2. Группы, ответственные за появление такой сложной смеси, могут быть определены следующим образом. Образование СО связано с соединениями типа простых эфиров и кетонов, содержащих лишь один атом кислорода в молекуле. Двуокись углерода образуется с большой вероятностью из соединений, содержащих два и более атомов кислорода в молекуле очень близко один от другого (ангидриды кислот и карбоновые кислоты). По аналогии можно считать, что SO2 характеризует группу сульфокислот. Группы, ответственные за появление OS и S2, не могут быть установлены точно. Они свидетельствуют, конечно, о соседстве атомов кислорода и серы и наличии более чем одного атома серы. Содержание нафталина мало (так же как и содержание бензола), и это может свидетельствовать о наличии конденсированной системы, а не присоединенной нафталиновой группы. Присутствие бензофенона позволяет сделать очень важные выводы о структурной группе исследуемой молекулы этот факт свидетельствует также, что бензофеноновая группа не очень прочно связана с остальной частью скелета. Эта часть молекулы, как показали дальнейшие исследования, представлена структурой [c.180]

    Хепп и Стьюарт очистили 10 алифатических кислот и получили их масс-спектры [831]. Наличие кислорода устанавливается просто молекулярный вес карбоновых кислот на две единицы выше молекулярного веса соответствующих углеводородов, причем пики молекулярных ионов достаточно интенсивны и могут быть замечены без особых затруднений. Таким образом, кислоты с алкильной группой, связанной с карбоксильной, легко отличаются от углеводородов. Большие пики 31, 45, 59 и т. д. также свидетельствуют о присутствии кислорода в молекуле, а наличие характерных пиков, связанных с карбоксильной группой, обычно облегчает идентификацию кислот. Необходимо отметить, что многие из низших членов ряда одноосновных кислот обладают едким запахом, что дает возможность просто отличить, например, масляную кислоту от валериановой. Двухосновные кислоты не обладают таким свойством, однако так как они обычно термически неустойчивы и распадаются при нагревании до температуры, необходимой для создания соответствующей упругости пара, то обычно такие соединения превращаются в метиловые или этиловые эфиры до исследования их при помощи масс-спектрометрического метода или газожидкостной хроматографии [1643]. Многие из этих эфиров могут быть идентифицированы по запаху. [c.380]

    Первый способ (а) просто показывает ионизацию и фрагментацию в величинах т/е и дает мало информации. Второй способ (б) представляет тот же путь распада с указанием элементного состава ионов, что несет уже большую информацию, так как становится известен состав иона и отщепляющейся частицы на данной стадии фрагментации. В третьем способе (в) к экспериментальным фактам добавляются предполагаемые структуры молекулярного и осколочных ионов при допущении минимальных изменений исходной молекулы. В конце концов может быть доказано, что эти структуры либо правильны, либо неверны, но это не имеет существенного значения для онисаиия направления фрагментации. Дополнительное преимущество постулирования ионных структур проявляется при сравнении масс-спектров отдельных групп соединений, имеющих общие черты фрагментации, поскольку сходство и различие поведения соединений при распаде более очевидны из структурных сопоставлений, чем из сопоставления элементных составов. Так, сходство в поведении метилдиэтиламина (1) и н-амиламина (2) легче заметить, сравнивая постулированные ионные структуры (4.4, а), а не соответствующие элементные составы (4.4, б). [c.95]

    Простые эфиры при низких энергиях ионизирующих электронов распадаются с предпочтительным отрывом меньшей алкильной группы, уходящей в виде молекулы спирта, причем заряд остается на большей алкильной группе минус атом водорода [723]. [c.294]

    Введение. Применение сильных источников излучения (терапевтическая аппаратура, кобальтовые пушки, ядерные реакторы и т. д.) и связанные с этим вопросы дозиметрии потребовали новых точных и простых в обра-ш ении дозиметров. Поскольку обычные физические методы регистрации излучения в поле очень больших мощностей дозы становятся непригодными, большое значение приобретают химические дозиметры. В принципе такой дозиметр представляет собой систему, химические или физические свойства которой при поглощении энергии излучения заметно изменяются. Так, при действии излучения речь может идти об изменении валентности, распаде или соединении, образовании окрашенных центров или о синтезе нового соединения. Химические дозиметры можно разделить на три группы. [c.395]

    Из схемы видно, что суммарная реакция нитрила и диена с образованием пиридиновых производных состоит из двух ступеней она идет через образование дигидрониридина, являющегося, по-видимому, начальным продуктом присоединения, который, теряя водород, превращается в производное пиридина. Используя метод групповых наращений [86], Япц и его коллеги [85] вычисляли изменение свободной энергии на каждой ступени и суммарное изменение энергии вышеупомянутой реакции при различных температурах и с различными радикалами К. Кроме того, они подсчитывали изменения свободной энергии при температуре распада пиридина на более простые соединения. Благодаря этому стало возможным предсказывать, какая замещающая группа К больше всего способствует реакции образования пиридинового кольца, а также оптимальный диапазон температур для осуществления этой реакции. Ими было обнаружено, что если К — фенильный остаток, то первая ступень — реакция присоединения — проходит при температурах выше 300 К с увеличением свободной энергии, но зато вторая ступень — дегидрогенизация — протекает со значительным уменьшением свободной энергии, так как суммарная реакция между нитрилом и диеном с получением производных пиридина характеризуется уменьшением свободной энергии при температурах до 800 К. Далее, Янц и его коллеги занялись поисками катализаторов, которые повысили бы скорость реакции, причем решили проводить реакцию при [c.173]

    Группа IV. Наиболее простые гидриды типа АН4 образуют тетраэдрические молекулы. Углерод дает большой ряд гидридов (угле-нодпроды), который, естественно, распадается на две основные группы  [c.283]

    Сравнение данных такого рода для более разнообразных веш,еств (фиг. 106) показывает, что отклонения от простого линейного спектра распадаются на три класса. Наименьшая кривизна спектров наблюдается в группе, состоящей из полиуретанового каучука [21], полиизобутилена [7], полигек-сена-1 [15] и ряда метакрилатов (см. фиг. 105). Несколько большие отклонения обнаруживаются для поливинилацетата [11] и полиметилакрилата [13]. Что же касается натурального каучука [17], вулканизованного и невулканнзованного, то для [c.307]

    Реакции этилсерной кислоты. Омыление кислого этилсульфата до спирта и кислоты, а также неполный его гидролиз с последующим получением простого эфира обычными методами [186, 189] являются путями частичного использования этилена, содержащегося в газах реформинга нефти. Ужо в течение некоторого времени этиловый спирт, полученный этим путем, конкурирует со спиртом, получаемым методом брожения. При обычных температурах этилсерная кислота гидролизуется с большим трудом. Например [190], нри стоянии разбавленного раствора кислого эфира в течение 24 час. при комнатной температуре степень распада настолько мала, что не поддается измерению. Однако при 100° в концентрированных растворах эта реакция протекает легко. Гидролиз растворимой бариевой соли эфира [191] (скорость гидролиза определялась по скорости осаждения сернокислого бария) в чистой воде идет медленнее, чем в 1,0и., но быстрее, чем в 0,5 н. растворах соляной кислоты. Эти данные не подтверждаются работами других исследователей [192], согласно которым увеличение скорости гидролиза пропорционально увеличению концентрации водородных ионов. В щелочном растворе скорость гидролиза обычно меньше, чем в кислом растворе такой же концентрации. Скорость гидролиза различных солей возрастает с увеличением атомного веса металла, в то время как изменение веса алкильной группы оказывает противоположное действие [156]. [c.36]

    Применение групповых реагентов при анализе представляет, очевидно, большие удобстаа. В самом деле, сложная задача распадается при этом на ряд более простых. Кроме того, если какая-тибо группа отсутствует целиком, то при прибавлении группового реагента к анализируемому раствору осадок не выпадет. Из этого нам сразу станет ясно, что не имеет смысла делать реакции на отдельные ионы данной группы и можно значительно сэкономить труд, время и реактивы. [c.27]


Смотреть страницы где упоминается термин Простой распад на две большие группы: [c.335]    [c.335]    [c.414]    [c.36]    [c.18]    [c.183]    [c.390]    [c.347]    [c.86]    [c.86]    [c.79]    [c.372]    [c.639]    [c.115]   
Смотреть главы в:

Термохимическая кинетика -> Простой распад на две большие группы




ПОИСК







© 2025 chem21.info Реклама на сайте