Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вольфрам железом

    С помощью электролиза можно получать покрытия в виде сплавов, содержащих такие металлы, которые не выделяются на катоде в чистом виде или выделяются с очень малыми выходами по току (например, вольфрам, молибден, рений и др.). Были разработаны условия электролитического получения сплавов вольфрам-железо, вольфрам-никель, вольфрам-кобальт, вольфрам-хром, молибден-никель и др. [c.431]


    Вольфрам Железо Молибден Висмут.  [c.211]

    Другой распространенный восстановитель —водород Но, при помощи которого получают молибден, вольфрам, железо и другие металлы, например  [c.192]

    Каталитическое окисление. При каталитическом окислении в зависимости от температурных условий и применяемого катализатора кислород может окислять исходные углеводороды до альдегида или до кислоты. Контактное окисление обычно протекает при высокой температуре (400—600 °С), осуществляют процесс в паровой фазе. Катализаторами служат такие металлы, как медь, серебро, ванадий, молибден, вольфрам, железо и ряд других. Кроме индивидуальных металлов применяют их смеси. Катализируют процессы окисления и оксиды перечисленных металлов. Выбор катализатора и температура определяются главным образом желаемой степенью окисления углеводорода. Так как кислород с парами органических соединений образует взрывоопасные смеси, концентрация его [c.237]

    В основном этот метод аналогичен методу определения примесей в цирконии (см. стр. 169) он дает возможность определять алюминий, ванадий, вольфрам, железо, кальций, кобальт, кремний, магний, марганец, медь, молибден, никель, ниобий, олово, титан и хром. [c.182]

    Вольфрам Железо-армко [c.841]

    Метод проверен на искусственных смесях, взятых в виде порошков, в которые входили теллур, вольфрам, железо, магний и селен в одном случае и железо, алюминий, свинец, молибден и селен — в другом. Кроме того, метод проверялся также на образце селенита меди. Во всех случаях результаты оказались вполне удовлетворительными, например было взято 8,42 мг селена, найдено 8,43 и 8,48 мг. Не растворяющиеся в воде пробы сплавляют с едким натром, причем селен окисляется до селеновой кислоты сплавы выщелачиваются водой. [c.292]

    Железо + висмут Железо 4-медь. . Железо + церий. Железо + вольфрам Железо + торий. Железо + калий.  [c.359]

    Вольфрам. . . Железо -а. . W Ре 74 26 183,92 55,85 9,5 7,2 2,82 19,35 7,86 3377 1540 5830 2880 — 0,032 0,108 4,4 11,5 5,0 10,6 -0,43 350 70 150 30 50 85 39000 21000 3,153 2,861 Центрированный куб То же [c.366]

    Алюминиево-кремнистый сплав То же Вольфрам Железо-армко [c.84]

    Смесь вольфрам — железо 90 г , 10 г Ре, размер частиц 1 — 4 мкм Раствор нитроцеллюлозы в этилацетате 1 340—1 350° С (циркон) 1 350—1 400° С (глинозем) 15—30 мин, в смеси водород— азот (15 85)  [c.149]

    Смесь вольфрам — железо 90 г 10 г Ре Может применяться, например, 2>%-ный раствор шеллака в спирте — — 1 400° С в водороде Поели зачистки проволочной теткой наносится слой N1 или Си Эвтектика Ад—Си — [c.150]

    Алюмель Вольфрам Железо химически чистое Иридий Константан Копель Молибден Медь химически чистая Нихром [c.77]


    Висмут 271 487 Вольфрам, железо, никель, хромель, тигли из АШз  [c.645]

    Мешающие ионы. Не мешают в отношении 1000 1 —алюминий, барий, ванадий, вольфрам, железо (II) и (III), кальций, кадмий, кобальт, магний, марганец, молибден, мышьяк, никель, олово, сурьма, титан и цинк. [c.888]

    Определению мешают элементы, катализирующие реакцию окисления тиосульфат-иона вольфрам, железо, медь, цирконий, ниобий, тантал. Замедляют реакцию анионы, образующие комплексные соединения с ванадием фторид, цитрат, тартрат, фосфат. [c.105]

    Определению мешают ванадий, при десятикратном избытке— вольфрам, железо и медь, а также различные окислители. [c.151]

    Золото и висмут растворяют полоний в любых соотношениях. Алюминий, углерод, молибден, вольфрам, железо и тантал не реагируют с полонием [27]. [c.205]

    Из аналогичных электролитов можно осадить и другие тройные сплавы, например железо—вольфрам—молибден, никель—вольфрам—молибден, кобальт—никель—вольфрам, железо—кобальт—вольфрам и железо—никель—вольфрам 1224]. [c.104]

    Бром. . . Ванадий Висмут. . Водород Вольфрам Железо. . колото. . Иод, . , Кадмий. , Калий. . Кальций Кислород Кобальт Кремний Литий. . Магний. , Марганец Медь. . . Молибден [c.196]

    Некоторые металлы — калий, молибден, вольфрам, железо, осмий, иридий — горят в трифториде хлора [И]. Натрий, кальций, магний, алюминий, серебро, цинк, свинец и олово при взаимодействии с трифторидом хлора образуют фториды, не растворимые в жидком реагенте происходит пассивация металла. Однако при нагревании эти металлы бурно реагируют. Более медленно взаимодействует ртуть. При действии трифторида хлора на селен образуется тетрафторид селена [99]. [c.50]

    Вольфрам — железо (система) 1—656 Вольфрамит 1—652 3—135 Вольфрам — медь (система) 1—657 Вольфрам — медь — никель (система) 1—65 7 [c.557]

    ИСО 11885 устанавливает метод определения растворенных и нерастворенных элементов, а также их общего количества в питьевой воде и в природных и сточных водах атомно-эмиссионной спектроскопией. Данным методом можно определять алюминий, барий, бериллий, бор, ванадий, висмут, вольфрам, железо, кадмий, калий, кальций, кобальт, кремний, литий, магний, марганец, медь, молибден, мышьяк, натрий, никель, олово, свинец, селен, серебро, серу, стронций, сурьму, титан, фосфор, хром, цинк, цирконий. [c.334]

    Большинство чистых металлов не пригодно для этих целей, так как они обладают малым удельным сопротивлением и большим температурным коэффициентом, но все же благодаря другим ценным свойствам молибден, никель, вольфрам, железо и иридий находят применение в качестве нагревателей. Применяют также графит, уголь, карборунд и т. п. [c.123]

    Вольфрам Железо Хром. Медь, . Никель. Цинк. . Алюминий [c.81]

    В частности, особый интерес за последние годы приобрело электролитическое получение жаростойких сплавов [3—5] в связи с тем, что покрытия из жаростойких сплавов имеют значительные экономические и конструктивные преимущества. Вместо изготовления всей детали из дорогостоящего и тяжелого материала можно нанести электролитическое покрытие сравнительно небольшой толщины на другие, более легкие и дешевые материалы. Кроме того, многие редкие и необычные материалы, которые при электролизе водных растворов не удается получить в чистом виде, можно осадить в виде сплавов с другими металлами [3, 6], например, сплавы вольфрам — железо, вольфрам—никель, вольфрам — кобальт, молибден — никель, титан — железо и др. [c.176]

    Благодаря использованию ценных свойств индивидуальных металлов покрытиям можно придавать путем совместного электроосаждения металлов в виде сплавов разнообразные свойства. В виде сплавов можно получать электролитические покрытия металлами, которые не выделяются из водных растворов на катоде, как например, вольфрам, молибден, рений и др. Таким способом получают жаростойкие покрытия сплавами вольфрам — железо, вольфрам — никель, вольфрам — кобальт, вольфрам — хром, молибден-—никель и др. [c.234]

    Медь. Серебро Магний. Цинк. Олово. Кадмий Сурьма. Висмут, Вольфрам Железо [c.179]

    Большинство каталитически активных металлов, как указывалось выще, представляет собой элементы VI и VIII групп Периодической системы элементов Д. И. Менделеева (хром, молибден, вольфрам, железо, кобальт, никель, платина и палладий). В некоторых случаях сульфиды и окислы этих металлов в свободном состоянии (без носителей) обнаруживают кислотные свойства. Примером может служить дисульфид вольфрама, обладающий каталитической активностью в реакциях гидроизомеризации, гидрокрекин" га и насыщения кратных связей. Так как серосодержащие соединения присутствуют практически в любом сырье, следует применять серостойкие катализаторы — сульфиды металлов. В большин-, стве современных процессов в качестве катализаторов используют кобальт или никель, смешанные в различных соотношениях с молибденом, на пористом носителе (окиси алюминия). Иногда применяют сульфидный никельвольфрамовый катализатор. [c.215]

    На практике чаще всего применяются сплавы вольфрама не с одним каким-либо металлом, а с несколькими. Таковы, в частности, кислотостойкие сплавы вольфрама с хромом и кобальтом или никелем (амалой) из иих делают хирургические инструменты. Лучшие марки магнитной стали содержат вольфрам, железо и кобальт. А в специальных жаропрочных сплавах, кроме вольфрама, имеются хром, никель м алюминий. [c.186]


    Железо — кальций < железо—марганец < железо — свинец < железо < железо — вольфрам < железо — медь < железо—висмут вольфрам, медь, торий и церий активируют железный катализатор, кальций и . арганец уменьшают его каталитическую активность [c.374]

    Алюминий.. Берилий. . . Ванадий. Висмут. . . Вольфрам. . Железо Ре +. Золото Аи +. Кадмий. . . Кобальт Со + Магний. . . Марганец Мп + Медь Си + . Молибден Мо + Мышьяк Аз. Никель N 2+. Олово 5п +. Свинец РЬ +. Серебро. . . Тантал. . . Титан Т1 +. Хром Сг +. . Цинк. ... Цирконий. .  [c.368]

    Алюминий Барий. Бериллий Висмут. Вольфрам Железо Золото. Кадмий. Кальций Калий. Кобальт Литий. Магний Марганец Медь. . Молибден Натрий. Никель. Олово. Палладий Платина Рубидий Свинец. Серебро Стронций Сурьма Тантал. Торий. Углерод Уран. . Хром. . Цезий. Цчнк. . Цирконий [c.355]

    К солянокислому раствору соли циркония прибавляют раствор аммиака до появления мути, после чего прибавляют 10 г-ацетата, аммония, 20 г нитрата аммония и 20—25 мл 80%-ной уксусной кислоты. Раствор нагревают до кипения и при перемешивании прибавляют 10%-ный раствор таннина в десятикратном избытке. После непродолжительного кипячения осаждение циркония заканчивается отстоявшийся осадок отфильтровывают и промывают горячим 10% -ным )аствором уксусной кислоты, к которой прибавлено немного нитрата аммония. 1осле высушивания при 110° С осадок озоляют и прокаливают. К остатку прибавляют несколько капель азотной кислоты и вновь прокаливают до постоянного веса Zr h. Мешают олово, медь, вольфрам, железо, ванадий, алюминий, торий, хром, галлий, молибден, ниобий и тантал. Цирконий хорошо определяется таннином при содержании более 0,6 мг 2гОг в 1 мл раствора. [c.55]

    Магний хорошо растворяет водород при температуре кристаллизации (жидкий магний) в нем растворяется около 50 см /ЮО г, а в твердом— около 20 см ЮО г. При 660—700 °С магний вступает во взаимодействие с азотом, образуя нитрид магния MgзN2. Магний при температуре 500—600 °С вступает во взаимодействие с серой, образуя сульфид МдЗ. Медь, железо и никель сильно снижают коррозионную стойкость магиия. Поэтому содержание железа не должно быть более 0,04 %, меди — более 0,005 % и никеля — более 0,001 %. Магний практически не взаимодействует ни в жидком, ни в твердом состоянии с такими тугоплавкими переходными металлами, как хром, молибден, вольфрам, железо и др., однако некоторые тугоплавкие переходные металлы — марганец, цирконий, никель и кобальт — растворяются частично в жидком магнии и даже входят, правда, в небольшом количестве в твердый раствор на его основе. [c.102]

    В системе вольфрам—железо образуются соединения ШеРег, Fe2W. Взаимная растворимость компонентов в твердом состоянии незначительна. Аналогичный характер носит взаимодействие вольфрама с кобальтом и никелем. [c.410]

    Перфторметан, а также фторуглероды с более высоким молекулярным весом реагируют со щелочными металлами при температуре около 400° с образованием фторидов металлов и углерода. Эта реакция была использована для различных методов анализа фторуглеродов и их производных. Перфторметан при 900° не взаимодействует с медью, никелем, вольфрамом и молибденом. Магний медленно реагирует с фторуглеродами даже нри 300°. Перекись натрия вызывает разложение фторуглеродов нри повышенной температуре, однако для исчерпывающей минерализации фторуглеродов, необходимой для аналитических целей, требуется нагревание до 400 — 500°. В этих же условиях цинк, алюминий и олово реагируют лишь незначительно только с поверхности, а медь, серебро, ртуть, свинец, фосфор, мышьяк, сурьма, вольфрам, железо, платина, окиси магния, кальция, бериллия, фосфорный и мышьяковый ангидриды в реакцию не вступают. [c.57]

    Азот. . Алюмипи Барий. Бериллий Бор. . Бром. . Ванадий Висмут. Водород Вольфрам Железо Золото. Йод. . Иридий Кадмий Калий. Кальций Кислород Кобальт Кремний Литий. Магний Марганец Медь Молибден Мышьяк Натрий.  [c.314]

    При взаимодействии серы с большинством металлов при повышенных температурах образуются сульфиды и полисульфиды. Исключение составляют золото и некоторые металлы платиновой группы. Жидкий бром взаимодействует уже при комнатной температуре со многими металлами. К ним относятся медь, серебро, алюминий, олово, свииец, титан, ванадий, ниобий, хром, молибден, вольфрам, железо, кобальт, никель. Чистые жидкие органические неэлектролиты типа бензола, хлороформа не вызывают коррозии металлов. Ряд примесей, которые могут содержаться в них, например иод, вода, способствуют коррозии металлов. Серебро с иодом, растворенным в хлороформе, взаимодействует при комнатной температуре с образованием пленки иодида серебра. Проведенные исследования показали, что скорость взаимодействия серебра с иодом контролируется скоростью диффузии иода через пленку иодвда серебра, что и определяет параболическую зависимость толщины пленки от времени коррозии. [c.30]

    Металлы в последовательности убывания их активности можно расположить в ряд палладий, платина, серебро, вольфрам, железо,. медь, кальций, свинец, ртуть это ряд их водородного перенапряжения. Боигеффер предположил, что атомы, рекомбинировавшие в адсорбированном слое, испаряются в виде молекул. Рогинский [54] и Шехтер [55] нашли, что рекомбинация атомов требует определенной, хотя И мало1 1 энергии активации. Эго обстоятельство, а также специфичность, которая, например, проявляется в приведенном выше ряду, показывают, чтО катализатор не действует просто как третье тело для удаления энергии [c.169]

    Влияние добавок различных легирующих элементов (в количестве нескольких процентов) на сопротивление титана окислению при сравнительно высоких температурах (700—900° С) изучали Кофстад, Хауффе и Кьёллесдаль [186] (бериллий, кремний, ниобий), Кинна и Кнорр [238] (ванадий, тантал, хром, вольфрам и молибден), Дженкинс [239] (цирконий, вольфрам, железо, алюминий и олово), а также Итака и Оцука [693] (бериллий, хром, алюминий). Более обстоятельное исследование сплавов титана с хромом провели Мак-Ферсон и Фонтана [694]. [c.297]

    Алюминий (А1) Барий (Ва). . Берилий (Ве) Ванадий (V). Висмут (В1). Вольфрам ( ) Железо (Ре). Золото (Аи). Иридий (Лг). Кадмий (Сс1). Калий (К). . Кальций (Са) Кобальт (Со) Кремний (81). Литий (Ь1). . Магний (Mg) Марганец (Мп) Медь (Си). . Натрий (Ыа). Никель (N1). Молибден (Мо) Ниобий (Nb). Олово (Зп). Осмий (Оз). Палладий (Р(1) Платина (Р1) Ртуть (Hg). Рубидий (НЬ) Свинец (РЬ). Серебро (Ag) Стронций (8г) Сурьма (5Ь). Тантал (Та). Титан (Т1). . Торий (ТЬ). Хром (Сг). . Цезий (Сз). Цинк (2п). . Цирконий (Zr) Теллур (Те).  [c.186]


Смотреть страницы где упоминается термин Вольфрам железом: [c.950]    [c.441]    [c.80]    [c.155]    [c.213]   
Новые окс-методы в аналитической химии (1968) -- [ c.154 ]




ПОИСК







© 2025 chem21.info Реклама на сайте