Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метод анализа измерений различных свойств

    Физико-химические (или инструментальные) методы анализа— это условное название большого числа количественных методов, основанных на измерении различных физических и химических свойств соединений и простых веществ (поглощение лучистой энергии, дисперсия, флуоресценция, потенциал разложения, поверхностное натяжение и т. д.) с использованием соответствующих приборов. Применение их позволяет намного полнее охарактеризовать состав и количество исследуемых материалов, сократить по сравнению с химическими методами продолжительность определений и повысить точность. [c.60]


    Количественное определение сахаров. Для количественных определений используют различные свойства сахара. Чаще всего в контроле производства различных углеводов применяют поляриметрический метод, который основан на измерении угла вращения плоскости поляризации растворов сахаров. На результаты при определении сахаров этим методом влияют другие оптически активные вещества, которые затрудняют анализ смесей сахаров. Большое распространение при исследовании растительных веществ и физиологических процессов в живых организмах получили химические и колориметрические методы. [c.151]

    Для непрерывных процессов некоторых химических производств наиболее выгодны автоматические методы контроля. Они часто основаны на измерении простых физических свойств системы, как электропроводность, плотность, рефракция и т. п. Однако автоматизация методов контроля производства должна быть экономически оправдана или, в других случаях, принята как необходимость, например при разделении радиоактивных материалов или вообще вредных для здоровья веществ, или если требуется очень быстрая сигнализация о всяких отклонениях от нормального хода процесса и т. п. Если же, например, лаборатории необходимо выполнять анализ материалов, различных по своему характеру, то автоматизация часто экономически нецелесообразна, так как требует большого количества дорогих приборов и значительного времени для наладки автоматов, для составления калибровочных и поправочных кривых и др. [c.29]

    Главным ограничением большинства физических методов анализа являются трудности их применения для анализа сложных смесей, так как третий компонент (и следующие) также может оказывать влияние на измеряемое свойство материала. Так, концентрацию серной кислоты в растворе можно определить различными физическими методами измерением плотности, вязкости, коэффициента преломления света, измерением pH, электропроводности и др. Однако, если в растворе, кроме серной кислоты, будет находиться другая кислота или соль в различных количествах, то все названные свойства раствора также будут меняться, и, следовательно, определить содержание серной кислоты каким-либо одним физическим методом невозможно. [c.16]

    В данной книге лишь бегло затронуты экспериментальные методы, используемые в физико-химическом анализе. Техника измерения различных свойств описана в специальных монографиях и руководствах. [c.8]


    Метод измерений различных свойств является наиболее распространенным, особенно при анализе трехкомпонентных систем. Для примера определим найденную ранее (см. с. 130) концентрацию С3 в системе, компоненты которой обладают аддитивными свойствами  [c.131]

    Физико-химический анализ основан на измерении различных свойств соединений или их смесей с использованием соответствующих приборов. В основе физико-химических методов технического анализа лежит исследование зависимости между составом технического продукта и его физическими свойствами. Например, методы фотоколориметрического и спектрофотометрического анализа основаны на измерении поглощения веществом или раствором лучистой энергии, полярографический и потенциометрический методы анализа основаны на измерении электропроводности растворов веществ и т. д. [c.43]

    Математически задача анализа состава многокомпонентных газовых смесей методом измерения различных свойств смесей (в этом случае свойство аддитивности является обязательным) можно представить в виде [c.124]

    В анализе растворов чистых веществ широко применяются оптические методы, основанные на измерении показателя преломления рефрактометрия, интерферометрия. Этими методами определяют концентрацию растворов сахара, спирта, различных солей, масел, анализируют газы. Для анализа трехкомпонентных систем разработаны методы, основанные на измерении двух различных свойств. Так, анализируя смесь ме- [c.18]

    ФИЗИКО-ХИМИЧЕСКИЕ МЕТОДЫ АНАЛИЗА — условное название многих количественных методов анализа, основанных на измерении различных физических свойств соединений или простых веществ с использованием соответствующих приборов. Измеряют плотность, поверхностное натяжение, вязкость, поглощение лучистой энергии, помутнение, поляризацию света, показатель преломления, ядерный и электронно-магнитный резонансы, потенциалы разложения, диэлектрическую постоянную, температуру фазовых превращений и др. Более правильное название — инструментальные методы анализа. [c.262]

    Нахождение молекулярной массы (средней СП целлюлозы) осу-щ,ествляют с помошью различных методов [см, например, 1-5] Отметим, что среднее значение молекулярной массы зависит от метода анализа и характера усреднения Характер же усреднения зависит в свою очередь от того, измерение каких свойств положено в основу метода - определяемых числом молекул или их размером Если свойство определяется числом молекул, речь идет о среднечисловой молекуляной массе (Мп), а если размером молекул — о среднемассовой молекулярной массе (М ) Когда полимер состоит из набора п фракций и числовая доля фракции с молекулярной массой М, равна У,, то М является средней статистической величиной, характеризуемой молекулярными (числовыми) долями молекул каждого размера представляет собой среднюю статистическую величину, определяемую массовыми долями молекул каждого размера где М = [c.8]

    К физико-химическим методам анализа относится большое число методов количественного анализа, основанных на измерении различных физических свойств простых веществ или химических соединений при проведении химических реакций. [c.327]

    Почти любое физическое свойство, характерное для любого элемента или соединения, может служить основой метода анализа. Так, например, светопоглощение окрашенного раствора, способность раствора проводить ток, теплопроводность газа —каждое из этих свойств может служить основой метода анализа соответствующего вещества. Ряд сходных методик анализа различных элементов и их соединений основан на измерении их электрических свойств, таких, как электродные потенциалы и потенциалы разложения. Явления искусственной радиоактивности, исследованные в широком масштабе в связи с изучением атомной энергии, привели к созданию нескольких аналитических методов, имеющих большие перспективы. [c.9]

    Для инженерных расчетов процессов движения турбулентных потоков, требующих, как правило, определения величин необходимых перепадов давления на различных участках гидравлических систем, теоретические методы анализа турбулентных потоков не дают возможности получить необходимые для практики расчетные формулы (аналогичные, например, формуле (1.57) для ламинарных потоков). Поэтому гидравлические расчеты для турбулентного режима течения потоков на практике производятся по формулам, получаемым не из теоретических решений дифференциальных уравнений движения, а путем обобщения результатов экспериментальных измерений величин перепадов давлений (АРтр). скоростей движения вязких жидкостей (Ш), диаметров и длин трубопроводов (й и Ь), а также физических свойств жидкостей (молекулярной вязкости ц и плотности р). [c.75]


    Если реакция очень быстрая, то невозможно проводить химический анализ на различных ее этапах. Вторая трудность, о которой упоминалось выше, состоит в том, что необходимы приборы, позволяющие немедленно определять какие-либо свойства реакционной системы. Для реакции в растворах обычно применяют спектрофотометрические методы. Если продукты реакции поглощают свет другой длины волны, чем реагенты, то можно пропустить монохроматический свет через реакционный сосуд, использовав для регистрации его поглощения фотоэлектрическое устройство с самописцем или осциллографом. Если реакция не слишком быстрая, можно ограничиться самописцем с пером, но если имеются осциллографы с временной шкалой, то можно сделать фотографию записи осциллографа. Быстрые газофазные реакции могут быть изучены в камере масс-спект-рометра, со специально разработанным для этой цели приспособлением, дающим быструю развертку во времени. Удобными свойствами для измерения скоростей очень быстрых реакций являются флуоресценция, электронная проводимость и оптическое вращение. [c.42]

    Детекторы являются измерительными устройствами в хроматографических аналитических системах, сочетающих разделение и измерение.. Исключительно высокая чувствительность, которой обладают известные типы детекторов, позволяет успешно использовать газовую хроматографию для решения множества интересных химических задач,,, недоступных другим методам анализа, и работать с малыми пробами,, что фактически гарантирует линейность изотермы. Вместе с тем детекторы обычно рассматривают как одни из самых больших разрушителей информации. Это в основном философский вопрос, имеющий, тем не менее практическое значение. Детектор является преобразователем — на него подается химический сигнал зоны растворенного вещества в газовом потоке, а откликом является электрический сигнал— ток либо напряжение, пропорциональные потоку пробы. Хотя молекулы для упрощения иногда удобно представлять в виде биллиардных шаров, их индивидуальные характеристики в настоящем случае представляют большой интерес. Однако, измеряя только общи поток пробы, детектор разрушает информацию о свойствах индивидуальных молекул. Детектор, реагирующий на различные элементы,, дал бы разного вида сигналы при вводе различных видов молекул. [c.581]

    Колориметрический метод анализа — это измерение цвета продукта. Он основан на свойствах различных растворов неодинаково поглощать проходящий через них поток света. Соответствующие приборы называются колориметрами. [c.144]

    Кристаллич. и аморфные участки в полимерах имеют различные свойства. Кристаллиты обладают большей плотностью, в них развиваются менее интенсивные молекулярные движения при темп-рах выше темп-ры стеклования, они характеризуются др. спектром молекулярной релаксации как в области механич. и диэлектрич. релаксации, так и в области ЯМР. Все это дает возможность использовать для определения С. к. различные методы — рентгенографию, ЯМР, ИК-спектроскопию, измерения плотности, теплоемкости и др. Широко распространены, напр., рентгенографич. методики оценки кристалличности (см. Рентгеноструктурный анализ), к-уые направлены на определение относительного количества кристаллитов как областей с трехмерной периодичностью в расположении атомов и молекул. Это связано с тем, что различие в рентгеновской дифракции от кристаллитов и аморфных участков связано именно с наличием или отсутствием порядка в структуре. [c.257]

    В первой части книги рассматриваются следующие проблемы основные закономерности реакций изотопного обмена в гомогенных и гетерогенных системах, применение метода радиоактивных индикаторов для изучения кинетики химических реакций, структуры молекул, процессов самодиффузии и измерения величины поверхности. Рассмотрены различные методы анализа, основанные на использовании радиоактивности (анализ по естественной радиоактивности, активационный анализ и др.). Значительное место уделено свойствам радиоактивных индикаторов без носителей и их применению. Описаны работы по открытию и изучению свойств новых элементов, при которых использовались радиометрические методы. Рассмотрен значительный круг химических явлений, сопровождающих ядерные реакции и химические процессы, происходящие под действием атомов отдачи (химия горячих атомов). Собран материал по эманационным методам. [c.3]

    Ион-селективные электроды, несмотря на сравнительно короткий период своего развития, широко используются химиками в анализе и исследованиях природных и сточных вод. Это связано с тем, что ион-селективные электроды позволяют следить за поведением одного, индивидуального иона, находящегося в сложной смеси, какими обычно бывают природные или сточные воды. Это выгодно отличает их применение от таких классических методов, как измерение электропроводности, плотности, вязкости, обобщенно характеризующих свойства воды. Ион-селективные электроды без всяких помех позволяют исследовать окрашенные, мутные растворы, содержащие большое количество твердых частиц, а также растворы, в которых присутствуют белковые вещества, протекают различные биохимические процессы, что особенно важно при анализе сточных вод. [c.136]

    Среди оптических методов анализа рассмотрим также рефрактометрический метод, основанный на способности различных веществ по-разному преломлять проходящий свет. Этот метод — один из самых простых инструментальных, требует небольших количеств анализируемого вещества, измерение проводится за очень короткое время. Этим методом можно идентифицировать жидкие вещества по их показателю преломления света, определять содержание вещества в растворе (для тех веществ, показатель преломления которых заметно отличается от показателя преломления растворителя). Показатель преломления является обязательно определяемым в лабораториях свойством нефтяных фракций и нефтепродуктов при их адсорбционном разделении. [c.168]

    Физические методы анализа обычно удобнее химических измеряется какое-либо физическое свойство реакционной смеси, изменяющееся в ходе реакции. Очевидно, должно иметь место существенное различие во вкладах в измеряемое свойство исходных веществ и продуктов реакции. Среди физических можно назвать методы, связанные с измерением давления (см. табл. 1) при газовой реакции, дилатометрию, т. е. измерение изменений объема, различные оптические ме- [c.29]

    Текучесть - одно из самых характерных свойств жидкого состояния. Под текучестью сплошной среды понимают ее способность совершать непрерывное, неограниченное движение в пространстве и во времени под действием приложенных сил. Именно по вязкости (величине, обратной текучести) жидкости отличаются между собой более всего. Если, например, плотности жидкостей от наиболее легкой - жидкого водорода до наиболее тяжелой - расплавленной платины отличаются в 70 раз, то вязкости различных жидкостей могут отличаться в миллионы раз. Коэффициенты вязкости и их температурные производные весьма чувствительны к ассоциативному состоянию вещества и межмолекуляр-ным взаимодействиям в растворах. Так, в системе фениловое горчичное масло - диэтиламин вязкость изменяется в 3,5 10 раз, в то время как ряд других свойств и, е. А., р и др. изменяются сравнительно мало (например, плотность всего лишь на несколько десятых г/см ). Еще большее различие в коэффициентах вязкости имеют неводные растворы различных полимеров. Молекулярные взаимодействия обеспечивают широкий диапазон изменения вязкости при изменении параметров состояния (Т, Р, С и др.) и обусловливают противоположную по сравнению с газами ее температурную зависимость. Все это заставляет рассматривать вязкость как эффективный параметр физико-химического анализа жидких систем и чувствительное средство контроля качества жидкофазных материалов. В настоящей главе рассматриваются основные средства измерения вязкости, методы расчета характеристик вязкого течения. Основное внимание уделено ньютоновским жидкостям и среди других капиллярным методам ее измерения. [c.46]

    О природе растворимости данного металла можно сделать правильное заключение ьа основании результатов различных физико-химических методов исследования определения величины растворимости изучения окраски растворов металлов синтеза субсоединений, криоскопических исследований термического анализа, измерения упругости пара над расплавом определения объемных эффектов, изучения электропроводности магнитных и спектроскопических исследований потенциометрических методов Определить состав субсоединений образующихся при растворении металла в его соли, можно на основании измерения понижения точки замерзания расплава, расчета теплоты плавления из уравнения Шредера, изучения парамагнитных и диамагнитных свойств растворов, потенциометрических исследований. Подробный обзор э их методов дан в работе 1221 [c.85]

    В анализе растворов чистых веществ широко применяются оптические методы, основанные на измерении показателя преломления рефрактометрия, интерферометрия. Этими методами определяют концентрацию растворов сахара, спирта, различных солей, масел, анализируют газы. Для анализа трехкомпонентных систем разработаны методы, основанные на измерении двух различных свойств. Так, анализируя смесь метилового спирта, этилового спирта и воды, измеряют плотность раствора и показатель его преломления далее по соответствующим формулам или номограммам рассчитывают содержание компонентов. [c.19]

    Физические методы органической химии. Сборник под ред. А. Вайсбергера. ИЛ, Т. I, 1950 (532 стр.). Рассмотрены главным образом методы определения физических свойств различных веществ температуры плавления, температуры кипения, растворимости и др. Т. II, 1952 (587 стр.). Описаны методы регулирования и измерения температуры, колориметрия, микроскопия и др. Т. III, 1954 (216 стр.). Дипольный момент, масс-спектрометрия, определение радиоактивности. Т. IV, 1955 (747 стр.). В этом томе рассмотрены главным образом физико-химические методы анализа спектроскопия и спектрофотометрия, поляриметрия, полярография, магнитная восприимчивость, колориметрия и др. [c.472]

    В рассмотренных выше методах определение примесей было основано на измерении электрических свойств материалов. Измерениями теплопроводности можно обнаружить даже нейтральные примеси, и этот метод моя ет дополнить уже описанные методы анализа. Другое преимущество метода теплопроводности в том, что можно исследовать материалы различной электропроводимости, а не только одного класса полупроводников или изоляторов. [c.391]

    Метод измерений различных свойств получил распространение и для анализа многокомпонентных газовых смесей. На рис. 67 представлена схема анализа колошникового газа доменных печей [41]. Колошниковый газ из газопровода 1 через запорные устройства 2 подается в отборно-очистное устройство 4. Отсюда газовая смесь поступает одновременно в три газоанализатора термокондуктомет- [c.134]

    Интенсивность и распределение вихревых токов в объекте зависят от его геометрических размеров, электрических и магнитных свойств материала, от наличия в материале нарушений сплошности, взаимного расположения преобразователя и объекта, т. е. от многих параметров. Это определяет большие возможности метода как средства контроля различных свойств объекта, но в то же время затрудняет его применение, так как при контроле одного параметра другие являются мешающими. Для разделения параметров используют раздельное или совместное измерение фазы, частоты и амплитуды сигнала измерительного преобразователя, подмагничи-вание изделия постоянным магнитным полем, ведут контроль одновременно на нескольких частотах, применяют спектральный анализ. Получаемые таким образом первичные информативные пара-метры позволяют контролировать геометрические размеры изделий (толщину стенки при одностороннем доступе), определять химсостав и структуру материала изделия, внутренние напряжения, обнаруживать поверхностные и подповерхностные (на глубине в несколько миллиметров) дефекты. [c.13]

    Мы не будем касаться методов измерений различных электрическпх свойств, как давно известных так и только что входящих в практику физико-химического анализа они освещены в специальной литературе. Охарактеризуем вкратце лишь наиболее важные и часто применяемые при изученпк диаграмм состояния свойства. Остановимся на методе термического анализа, растворимости, микроструктуры как имеющем общее значение вспомогательного метода, применяемого к любому классу веществ (металлы, соли, силикаты, органические вещества и др.). Измерения электропроводности и ьге-ханических свойств использз ются главным образом при изучении металличе- [c.80]

    С развитием металлургии, химической промышленности и других производств все более возрастала роль аналитической химии в решении различных вопросов контроля этих производств. При этом оказалось, что классические методы часто не могут удовлетворять новым требованиям. Химический анализ, как метод контроля производства, должен выполняться настолько быстро, чтобы на основе его данных можно было регулировать технологический процесс. Классические методы осаждения, фильтрования и другие выполняются в течение длительного времени и не позволяют надежно определять содержание микропримесей. В настоящее время нередко применяют материалы с содержанием в них 10"2— 10 % примесей. В связи с этим были установлены закономерности и разработаны методы измерения других свойств веществ, прежде всего оптических и электрохимических. Были [c.5]

    Плавление сопровождается значительными изменениями различных свойств полимера. Измеряя эти свойства при разных температурах, можно определять температуру плавления. Эдгар с сотрудниками применяли пенетрометр для определения температур плавления полиэтилентерефталата, полиэтилепсебацината и поли-этиленадипата. Для этой цели можно использовать измерение других физико-механических свойств, например модуля Юнга и вязкости. Скотт определял температуру плавления полиэтилентерефталата методом дифференциального термического анализа. Типичные результаты представлены на рис. 3. Для этой цели использовали так-,же и оптические методы , поскольку при плавлении исчезает двойное лучепреломление . Другой метод состоит в построении кривых нагревания и охлаждения, т. е. в определении зависимости температуры образца от времени . Когда расплав полимера медленно охлаждается, то экзотермический тепловой эффект фазового перехода вызывает задержку охлаждения. Таким образом, кривые охлаждения показывают точку плавления, тогда как при нагревании фиксируется интервал температур плавления. Гистерезис этих кривых обусловлен тем, что температуры плавления и кристаллизации у большин- [c.13]

    Метод изжрений в различных условиях одного и того же свойства. Примеры оптический анализ при разных длинах волн, измерение теплопроводности при неодинаковых температурах и т. д. [c.128]

    Рентгенографический анализ помог установить расположение молекул воды в кристаллах различных белков [25]. При анализе рубредоксина получена особенно ясная картина, в которой было идентифицировано 127 молекул воды. Так как метод дифракции рентгеновских лучей дает картину, усредненную во времени, степень заселенности центров, удерживающих воду, варьирует от 1 до 0,3, а некоторые центры взаимно исключают друг друга. Имеется несколько плотных сетчатых структур, состоящих из атомов воды и белка, которые связаны системой водородных связей. В этой модели большая часть воды находится от белка на расстоянии длины водородных связей, образуемых атомами белка. Однако 25% воды находится на расстоянии 4 А или больше. При этом пик функции распределения соответствует расстоянию 4 или 4,5 А. Последняя величина равна расстоянию между ближайшими соседними атомами в воде или во льду. Вода, находящаяся на расстоянии 4 А или больше, не контактирует с атомами белка и представляет собой воду многослойного покрытия. Авторы полагают, что вода в полимолекулярных слоях не обнаруживается при измерениях термодинамических свойств. По-видимому, вода может быть локализована в результате образования молекулами, находящимися на поверхности белка, водородных связей и вег же будет проявлять термодинамические свойства, неотличимые от свойств растворителя в объеме (см. заключительную часть). [c.125]

    ФИЗИКО-ХИМИЧЕСКИЕ МЕТОДЫ АНАЛИЗА — условное название большого числа колич. методов анализа, основанных на измерении различных физич. свойств соединений илп простых веществ с пспользованием соответствующих приборов. Измеряют плотность, поверхностное натяжение, вязкость, поглощение лучистой энергип (рентгеновских лучей, ультрафиолетового, видимого, инфракрасного излучений и микроволн), помутнение, излучение радиации (вследствие возбуждения), комбинационное рассеяние света, вращение плоскости поляризации света, показатель преломления, дисперсию, флуоресценцию и фосфоресценцию, дифракцию рентгеновских лучей п электронов, ядерный и электронный магнитный резонанс, полуэлектродпые потенциалы, потенциалы разложения, электрич. проводимость, диэлектрич. постоянную, магнитную восприимчивость, темп-ру фазовых превращений (темп-ра кипения, плавления и т. п.), теплоты реакцпп (горения, нейтрализации и т. д.), теплопроводность и звукопроводность (газов), радиоактивность и другпе фпзпч. свойства. В настоящее время все чаще фпзико-химич. методы анализа называют (более правильно) инструментальными методами анализа. [c.214]

    Все методы анализа основаны на изучении свойств вещества, связанных с концентрацией определенной зависимостью. В так называемых классических методах аналитической химии (гравиметрическом и титриметриче-ском анализе) в качестве таких свойств используются масса вещества и объем раствора. Однако вещество обладает совокупностью многих свойств — оно может поглощать и испускать свет, подвергаться радиоактивному распаду и т. п. Использование различных физических и физико-химических свойств вещества в аналитических целях лежит в основе физико-химических методов анализа. Эти методы обладают многими существенными достоинствами (высокая чувствительность, быстрое получение результатов) и по ряду показателей превосходят так называемые классические методы. Чувствительность физико-химических методов анализа позволяет легко проводить определения при содержании компонента 10 —10 % и меньше. Некоторые методы, основанные на измерении радиоактивности, настолько чувствительны, что позволяют считать чуть ли не отдельные атомы вещества. В области малых концентраций классические методы вообще неприменимы и анализ может быть выполнен только физико-химическими методами. В области средних концентраций физико-химические методы анализа успешно конкурируют с классическими методами, так как даже приближенный результат анализа, полученный в течение нескольких минут, нередко является более ценным, чем самые точные данные, полученные через несколько часов или дней. [c.4]

    Предпосылки для развития теории физико-химического анализа гомогенных систем появились в результате открытия Гульдбергом и Вааге в 1867 г. закона действующих масс. Однако теория физико-химического анализа гомогенных систем была разработана несколько позже. Основы ее заложены Н. С. Курнаковым, развившим в первой четверти нашего столетия учение о сингулярных точках. Экспериментальные исследования стали возможными после создания метода изомолярных серий Остро-мысленского-Жоба и разработки методов определения состава химических соединений и констант равновесия со данным измерения различных физических свойств. [c.3]

    В книге излагаются теоретические и экспериментальные основы кондуктометрического и хронокондуктометрического методов анализа. Описываются методы определения индивидуальных соединений и методы анализа многокомпонентных смесей, приводятся кондуктометрические кривые титрования электролитов, проявляющих кислотно-основные свойства в водных растворах. Даны критерии применимости кондуктометрического метода для определений, основанных на использовании реакций различных типов. Описывается аппаратура и техника кондуито.четрических измерений. [c.2]

    Исследование основных составных частей с помощью элементарного анализа, измерения физических и оптических свойств и изучение поведения при деструкции также дают сведения о чистоте при условии, что строение основного компонента точно известно и точность измерений достаточно высока для обнаружения возможных загрязнений. Для кристаллических веществ с узкой областью молекулярных весов могут быть полезны методы определения чистоты по точке замерзания, кривым растворимости или по данным термогравиметрического или дифференциального термического анализа. Обсуждение различных методов дано Стенжером, Крамметом и Коблером [143]. [c.11]


Смотреть страницы где упоминается термин Метод анализа измерений различных свойств: [c.27]    [c.10]    [c.3]    [c.189]    [c.8]    [c.8]    [c.23]    [c.93]   
Автоматический анализ газов и жидкостей на химических предприятниях (1976) -- [ c.128 , c.131 ]




ПОИСК





Смотрите так же термины и статьи:

Метод измерений различных свойств

Метод свойствам

Различные методы



© 2025 chem21.info Реклама на сайте