Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекула метана

    А молекулы жидкого метана, не содержащие гидроксильных групп, не слипаются. Они легко разлетаются, образуя газ. Даже при такой низкой температуре, как —161 С, тепла хватает, чтобы испарить метан — его температура кипения как раз —161 С. А молекулы метилового спирта содержат гидроксильные группы, которые делают их липкими . Чтобы отделить их друг от друга и превратить в газ, нужно затратить немало энергии, хотя сами молекулы лишь немногим крупнее молекул метана. Вот почему температура кипения метилового спирта 65 "С — на 226 градусов выше, чем у метана. [c.86]


    При замещении хлора в молекуле метана фтором температура кипения углеводорода снижается приблизительно на 52°. Температура кипения производных этана изменяется значительно меньше. Ниже пр.и-ведена температура кипения (°С при 760 мм рт. ст.) некоторых хлорированных и фторированных парафиновых углеводородов  [c.204]

    Относительное расположение атомов водорода и углерода для тетраэдрической молекулы метана СН4 приведено на рис. 43. Как видно Hi рисунка, правильный тетраэдр  [c.63]

    Меченые атомы открывают широкие возможности непосредственного изучения механизма химических реакций. В качестве меченых атомов могут быть применены как стабильные, так и радиоактивные изотопы. Обычно в исследуемой молекуле метится (т. е, заменяется на атом соответствующего стабильного или радиоактивного изотопа) определенный атом (тот, который подвергается перемещению) и исследуются его превращения в результате реакции. [c.369]

    Электронная формула показывает, что атом углерода в молекуле метана нмеет устойчивую восьмиэлектронную внешнюю оболочку (электронный октет), а атомы водорода — устойчивую двух-электронную оболочку (электронный дублет). [c.453]

    Боковая цепь в этом соединении состоит из атома углерода и присоединенных к нему трех атомов водорода. Другими словами, это не что иное, как молекула метана без одного водородного атома. Такая группировка называется метильной группой, а соединение, состоящее из [c.58]

    Начнем с чего-нибудь попроще. Представьте себе, что все атомы водорода в молекуле метана замещены атомами хлора  [c.68]

    Сырье каталитического крекинга — соляровый дестиллат — состоит из большого числа разнообразных углеводородов, молекулы которых содержат от 20 до 26 атомов углерода и от 40 до 50 атомов водорода. Если одна молекула метана состоит всего из [c.8]

    Это определяет образование четырех связей С—Н и расположение атомов водорода молекулы метана СН4 в вершинах тетраэдра (рис. 50). [c.72]

    Результаты расчета по температуре, полученной по уравнению связи ее с глубиной, показывает, что увеличение пластовой температуры ведет к уменьшению степени циклизации молекул метано-нафтеновых УВ. [c.172]

Рис. 121. Схема образования о-связем в молекуле метана. Рис. 121. <a href="/info/18430">Схема образования</a> о-связем в молекуле метана.

    Обратимся снова к молекуле метана. Метан - это первый представитель ряда углеводородов, известных под названием алканы,. которые мы сейчас рассматриваем. В алканах каждый углеродный атом образует ковалентную связь с четырьмя другими атомами. Алканы еще называют насыщенными углеводородами, потому что каждый атом углерода связан с максимальным числом других атомов (четыре). [c.188]

    Постройте модель молекулы метана СН4. [c.188]

    Сравните вашу модель с рис. III.8. Молекула метана должна иметь вид тригональной пирамиды (пирамиды с треугольником в основании) (рис. [c.188]

Рис. III.9. Молекула метана имеет ( юрму тетраэдра. Рис. III.9. <a href="/info/986289">Молекула метана</a> имеет ( юрму тетраэдра.
    В табл. 111.3 также даны названия первых 10 членов алканового ряда. Названия состоят нз корня с добавлением окончания ан . Корень указывает на число атомов углерода в молекуле. Мет — означает один атом углерода, эт — два, проп — три и т.д. [c.189]

    Химическую связь в молекуле метана, СН4, удается хорошо объяснить, исходя из представлений о тетраэдрических хр -гибридных орбиталях атома углерода. Эти представления позволяют также объяснить строение этана, СзН , и многих других органических соединений, в которых атомы углерода соединены друг с другом в цепи простыми связями. В этане к каждому из двух атомов углерода присоединено по три атома водорода с образованием ковалентных связей, в которых участвуют три из четырех гибридных хр -орбиталей. Четвертая хр -орбиталь каждого атома углерода используется для образования ковалентной связи с другим таким же атомом. Перекрывание р -гибридных орбиталей двух атомов углерода приводит к возникновению устойчивой связывающей молекулярной орбитали и неустойчивой разрыхляющей орбитали. Связывающая орбиталь, симметричная относительно оси С—С, является а-орбиталью и заполнена двумя электронами со спаренными спинами. [c.565]

    Эксперимент показывает, что молекула метана СН имеет форму тетраэдра. Как химики это объясняют  [c.192]

    На основании собранных классом данных определите молярные теплоты сгорания алкана с одним атомом углерода в молекуле (метана) и восемью (октана). [c.206]

    В молекуле метана имеется четыре атома водорода, и его хлорированием можно получить все четыре хлорпроизводных — [c.115]

    Началом цепи является активное соударение молекул метана и кислорода, в результате которого образуются два радикала СНз и Нб>. В последующих стадиях принимают участие радикалы типа ОН и НСО и относительно стабильные промежуточные продукты — формальдегид и перекись водорода. [c.54]

    Пользуясь языком теории локализованных связей, мы говорим, что молекула метана СН удерживается как единое целое благодаря имеющимся в ней четырем эквивалентным простым связям С—Н. Если такие представления верны, теплота разложения метана на изолированные атомы углерода и водорода должны быть вчетверо больше энергии связи С—Н. (Хотя по сути дела в дальнейшем всюду имеется в виду энтальпия, мы воспользуемся общепринятой, хотя и неправильной терминологией и будем считать, что получили значения энергии связей, а не энтальпии связей. Различие между численными значениями энтальпии и энергии связей настолько невелико, что оно находится в пределах точности самого подхода, в котором рассматриваются энергии локализованных связей.) [c.26]

    Нужно также отметить, что в радикалах происходит перераспределение энергии связи. Так, энергии разрыва связей в молекуле метана и радикалах следующие  [c.282]

    ПО. Приведите как можно больше фактов, указывающих на равноценность всех связей в молекуле метана. [c.30]

    Я уже говорил, что молекула метана без одного атома водорода называется метильной группой. То же самое относится и к любому углеводороду. Этан без одного атома водорода называется этильной группой. Точно так же образуются пролильная группа, бу-тильная, изобутильная и так далее. [c.72]

    Однако полное название может сообщить нам кое-что такое, о чем не может сказать сокращенное. Из него становится ясно, как выглядит молекула. Прежде всего, оно кончается на метилметан — это значит, что нужно начать с молекулы метана и присоединить к ней метильную группу. Трихлор означает, что три атома водорода в этой молекуле должны быть замещены на хлор. Дальше из названия следует, что еще два атома водорода замещены на хлорфенильные группы, т. е. на бензольные кольца, в каждом из которых недостает по одному атому водорода и еще один из атомов водорода замещен на хлор. Вот и все.  [c.75]

    Энергетическгя диаграмма орбиталей молекулы метана приведена на рис. 45. Невозбужденная молекула СН4 имеет два связывающих и два разрыхляющих энергетических уровня. Распределение восьми валентных электронов молекулы метана (четыре от атома С и четыре от ато-иов Н) соответствует электронной конфигурации [c.63]


    Тетраэдрическое строение молекулы метана наглядно выражается ее пространственными моделями — шариковой (рис. 122) илн сегментовой (рис. 123). Белые шарики (сегменты) изобра-ч [c.454]

    Молекула метана характеризуется сравнительно большой проч ностью. При обычных условиях метан активно (со взрывом) pea гирует с фтором, очень медленно взаимодейстпует с хлором почти не реагирует с бромом. Реакция с хлором или бромом уско ряется под действием света, а также при пагреванни и заклю чается в последовательном замещении атомов водорода атомам галогена с образованием галоген произвол ных, например [c.467]

    При сжигании метана будет происходить его соединение с кислородом при образовании новых продуктов. Именно кислород, соединяясь с углеродом метана, образует углекислый газ, а его соединение с водородом даст воду. При этом для сжигания одной молекулы метана потребуется две молекулы или четыре атома кислорода, а именно для того чтобы превратить углерод в СО2, потребуется одпа молекула кислорода, и для превращения четырех атемов водорода в Н2О потребуется тоже одна молекула кислорода, а всего четыре атома кислорода. Для дальнейшего расчета применяют формулу Торнтона  [c.68]

    Выше мы изложили традиционные квантовохимические представления о гибридизации атомных орбиталей на традиционных примерах (СО2, НС СН, Н2С==СН2, СН4, ВРз и т. д.). Однако эти представления, которые по праву можно назвать классическими, в ряде случаев оказываются неприменимыми. Одним из таких случаев является молекула 1,б-дикарба-/сло-зо-гексаборана (рис. 36), где четырех валентных АО углерода недостаточно для построения пяти ортогональных ГАО. Однако при отказе от требования ортогональности, как было показано С. Г. Семеновым, удается построить линейно-зависимый набор неорто-гональных ЛМО, преобразующихся друг в друга при операциях симметрии Оц1- Эти 15 ЛМО (6 двухцентровых, локализованных на связях СН и ВН 8 трехцентровых, локализованных на связях СВг и одна четырехцентровая, тождественная канонической 1 2г-М0, охватывающей атомы бора) с электронными заселенностями 2, не могут быть переведены унитарным преобразованием в исходные 13 канонических МО (сравни с рассмотренным выше случаем молекулы метана). [c.216]

    Метан, СН4, имеет четыре эквивалентных атома водорода, присоединенных к центральному атому углерода. Для соединения с четырьмя атомами водорода углероду приходится использовать все свои валентные орбитали. Путем гибридизации одной 2з- и трех 2р-орбиталей можно получить четыре эквивалентные 5р -гибридные орбитали (рис. 13-5). Каждая 5р -ги-бридная орбиталь имеет на одну четверть 5-характер и на три четверти р-характер. Все четыре хр -орбитали направлены к вершинам правильного тетраэдра, поэтому хр -орбитали иногда называют тетраэдрическими гибридами. В результате перекрывания каждой хр -гибридной орбитали с 1х-орбиталью атома водорода образуются четыре локализованные связывающие орбитали. Наилучщее перекрывание между и 1х-орбиталями получается при помещении четырех атомов водорода в вершины правильного тетраэдра, как это показано на рис. 13-6 (где изображен куб, чередующиеся вершины которого образуют вершины упоминаемого тетраэдра). В молекуле метана восемь валентных электронов (четыре от атома углерода и по одному от каждого из четырех атомов водорода), которые должны [c.555]

    Влияние размеров молекул на температуры плавления и кипения хорошо иллюстрируется на примере алканов с линейными молекулами общей формулы С Н2 +2, соответствующие данные для которых приведены на рис. 14-15 (для и от 1 до 20). Возрастание температур плавления и кипения при увеличении молекулярных размеров и массы частично объясняется тем, что для возбуждения движения тяжелых молекул необходима большая энергия. Однако другим важным фактором является то, что, например, молекула эйкозана С20Н42 имеет большую поверхность, чем молекула метана, и, следовательно, повышенное вандерваальсово притяжение. Влияние массы молекул сказывается на температурах плавления и кипения приблизительно одинаково. Однако площадь молекулярной поверхности [c.617]

    Рассмотрим в качестве примера канонические МО молекулы метана СН4 (симметрйя Та) в приближении МО ЛКАО (рис. 35)  [c.206]

    Более того, квантовомеханические расчеты электронной структуры молекулы метана показали, нто тетраэдрическая конфигурация этой молекулы отвечает наибольшей, по сравнению со всёми другими возможными для нее конфигурациями, электронной энергии. И только благодаря тому, что этой конфигурации соответствует минимум энергии отталкивания ядер, в результате чего полная энергия молекулы (равная сумме ее электронной и ядерной энергий) оказывается все же минимальной, связи С—Н в метане направлены в углы тетраэдра. Таким образом, геометрия молекулы не обусловлена данным типом гибридизации. Последняя лишь устанавливает соответствие между взаимным расположением ядер и пространственным распределением электронной плотности. Но это не единственная, и даже не главная в современной теории строения молекул, функция концепции гибридизации. [c.209]


Смотреть страницы где упоминается термин Молекула метана: [c.143]    [c.65]    [c.73]    [c.260]    [c.255]    [c.138]    [c.138]    [c.454]    [c.463]    [c.464]    [c.63]    [c.64]    [c.357]    [c.207]    [c.206]    [c.207]   
Смотреть главы в:

История электронных теорий органической химии -> Молекула метана

Основы кристаллохимии неорганических соединений -> Молекула метана


Основы квантовой химии (1979) -- [ c.163 , c.304 , c.310 ]




ПОИСК







© 2024 chem21.info Реклама на сайте