Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Азот активный метаном

    В табл. 1 приведены характеристики исследованных носителей и катализаторов. Поверхность носителей и катализаторов (Sh, S ) определяли по методу БЭТ с использованием азота в качестве адсорбата металлическая поверхность (Sni) — по хемосорбции окиси углерода прн 20° С. Пористость определяли на ртутной порометрической установке. Количество никеля в контакте было установлено аналитическим методом. Степень заполнения поверхности активным компонентом (а) найдена из отношения никелевой поверхности к общей поверхности контакта. Размеры кристаллитов никеля оценивали исходя из предположения, что они имеют кубическую форму с размером граней /"ni [Ю]. Активность всех изученных катализаторов в реакции паровой конверсии метана была оценена проточно-циркуляционным методом. Условия испытания образцов поддерживались постоянными объемная скорость по метану 1000 циркуляция 3-10 соотношение пар/газ 2 1, размер частичек 1—2 мм, температурный интервал 400—800° С. [c.34]


    Некоторые физические свойства используемых в настоящее время геттеров приведены в табл. 7. Из всех геттеров, указанных в таблице, наибольшее распространение получил титановый, который при распылении сорбирует значительные количества кислорода, азота, двуокиси и окиси углерода, водорода и паров воды. Инертные газы, а также метан и другие углеводороды сорбируются титаном слабо. В атмосфере поверхность титана быстро покрывается прочной и непроницаемой пленкой окислов, нитридов и карбидов, которые предотвращают дальнейшую реакцию газов с металлом. Высокая активность титана наряду со сравнительно высокой скоростью испарения и низкой стоимостью предопределили его широкое использование как геттера. [c.55]

    При контактировании с сырьем воздействие катализатора на углеводороды довольно быстро уменьшается вследствие отложения, кокса в его порах. Для восстановления активности, временно потерянной из-за отложения кокса в порах, катализатор должен быть освобожден от кокса. Сжигая кокс и превращая его в газообразные легко отделяемые от катализатора продукты сгорания, восстанавливают активность катализатора. Процесс восстановления активности катализатора носит название регенерации Образующиеся при этом газы называют газами регенерации. Они представляют собой в основном смесь нескольких газов — азота, кислорода (не вступившего в соединения), углекислого газа, окиси углерода и водяного пара. В противоположность газам регенерации газы крекинга состоят преимущественно из легких парафиновых и олефиновых углеводородов (метан, этан, этилен, пропан, пропилен и др.). [c.15]

Рис. 3. Коэффициент активности для констант равновесия в системе азот — метан. Для введения поправки на состав жидкой фазы умножить значение К на коэффициент активности у Рис. 3. <a href="/info/2358">Коэффициент активности</a> для <a href="/info/2838">констант равновесия</a> в <a href="/info/101371">системе азот</a> — метан. Для <a href="/info/1294604">введения поправки</a> на <a href="/info/30229">состав жидкой фазы</a> умножить значение К на коэффициент активности у
    До сих пор рассматривались молекулы, которые можно было принимать за упругие шары. Такие молекулы встречаются в природе очень редко, и при рассмотрении свойств реальных систем, приходится обращаться к другим моделям. Чаще всего химия руководствуется экспериментальными законами валентности. Они, например, утверждают, что обычные валентности водорода, кислорода, азота и углерода равны соответственно 1,2,3 и 4. Изучение стереохимии и оптической активности показывает, что два атома водорода 15 молекуле воды являются совершенно эквивалентными то же можно ска- )ать о трех атомах водорода в аммиаке и о четырех атомах в метане. Эти молекулы симметричны первая является плоской, вторая — пирамидальной, а третья — тетраэдрической. Точное применение законов механики внутриатомным и внутримолекулярным движениям всегда представляет трудную задачу, и практически такое применение очень редко оказывается возможным. Поэтому приходится довольствоваться рассмотрением молекулярных моделей, законы динамики которых лишь приблизительно соответствуют действительным законам поведения молекул. [c.77]


    Ассоциация газов восстановительной обстановки представлена метаном, сероводородом, азотом и т. д. Водорастворенные газы восстановительной обстановки могут быть двух типов. Там, где активно протекают анаэробные окислительно-восстановительные процессы, характерно наличие углекислого газа и сероводорода. В водах второго типа с резко восстановительными условиями углекислый газ и сероводород встречаются в незначительных количествах. Зона с восстановительной обстановкой нередко начинается на небольших глубинах и в большинстве бассейнов, заполненных осадочными породами, прослеживается на глубину всего изученного разреза. [c.257]

    Терентьев и Щербакова [15] разработали метод определения активного водорода в атмосфере углекислого газа, заслуживающий предпочтения вследствие своей простоты. Реакция ведется с вытеснением образовавшегося метана сухим углекислым газом. Метан собирают в обычном азото-метре и измеряют переведением в эвдиометр, как это делается при определении азота по Дюма. Для того чтобы избежать реакции углекислоты с иодистым метилмагнием, последний вводится в реакционный сосуд (после полного вытеснения воздуха) под слой эфирного раствора навески анализируемого продукта. Аппаратура изображена на рис. 9. [c.463]

    Для экспериментального исследования были выбраны промышленные активные угли АГ-2, АР-3 (стандартный и измельченный до 2—3 мм), БАУ, КАД-йодный и немецкий уголь Байера в качестве текучей среды использовались двуокись углерода, азот, метан и водород. На рис. 11,1 представлень кривые перепада давления в слое различных активных углей высотой 2 м. [c.245]

    Как установлено в том же Институте опытами в условиях адиабатического сжатия, предварительный подогрев реактора не обязателен, если компоненты реакции более активны, чем метан. Так, синтез аммиака из водорода и азота осуществляется без подогрева реактора. О гетерогенно-гомогенном механизме этой реакции можно судить, по зависимости ее от природы стенок. Низкотемпературный режим этого процесса объясняется, повидимому, влиянием высоких давлений. [c.371]

    К легким газам в хроматографии обычно относят водород, азот, кислород, элементы нулевой группы периодической таблицы, а также метан, оксид и диоксид углерода. Определение состава смесей, включающих эти газы, необходимо при анализе атмосферы нефтяных, болотных и рудничных газов продуктов радиоактивного распада, производства редких газов и продуктов электролиза газов, растворенных в металлах, в крови газов, выдыхаемых человеком многих смесей. Для хроматографического разделения таких смесей необходимы сильные сорбенты типа активных углей, силикагелей, алюмогелей и молекулярных сит. Однако вследствие очень высокого давления пара и примерно одинаковых размеров молекул разделить некоторые пары веществ даже на колонке с молекулярным ситом удается лишь при весьма низких температурах. Кроме того, вследствие сорбции газа-носителя может происходить изменение свойств адсорбента по отношению к разделяемым веществам, и, таким образом, природа подвижной фазы оказывает влияние на селективность колонки и форму регистрируемых пиков [231]. [c.221]

    Для решения проблемы горения кислого газа в печах установки Клауса пригласили специалистов Оренбургского Политехнического института. В результате проведенных исследований было предложено установить форкамерные горелки (проект выполнен в ПКО ГПЗ, активное участие в разработке проекта приняли главный инженер В.Я. Климов и начальник установки Матвеев A.B., от ОПИ - Г.И. Алимбаев), а также было предложено на печах подогрева 1,2,ЗУ50 F02, РОЗ стабилизатор воспламенения на горелку печи. Анализ работы печей подогрева с форкамерными горелками показал, что метанол, метан и другие углеводороды сгорают в печи полностью до паров воды и диоксида углерода. Пары воды, азот, диоксид углерода из кислого газа и воздуха переходят в продукты горения без изменения. В продуктах горения содержится около 0,2 % свободного кислорода, который переходит из воздуха. Переокисление сероводорода в печах подогрева уменьшилось, что снизило недостаток воздуха в печи реакции. [c.10]

    Различают три основных вида реактивного распыления — катодное, ионное и высокочастотное. При реактивном распылении газовая среда (кислород, азот, метан, аммиак) химически активна по отношению к распыляемым материалам. [c.47]

    Каталитическое действие примеси окислов азота N0 и N0.2 известно давно. Метан, этап, этилен, бензол окисляются в их присутствии при более низкой температуре, что способствует сохранению промежуточных продуктов окисления — муравьиного а.льдегида, уксусного альдегида, фенола, спиртов, кетонов и т. п. По-видимому (хотя это еще непосредственно и не доказано), N0 и N02 проявляют при этих довольно высоких температурах свою радикальную природу и, реагируя с молекулами горючего, образуют активные углеводородные радикалы, начинающие цепи окисления. Окись азота почти снимает типичный для окисления чистых углеводородов период индукции, увеличивает скорость окисления в период реакции (после периода индукции) и нередко меняет самый вид кинетических кривых. [c.252]


    М. И. Темкин, изучая синтез аммиака, пришел к выводу, что ускорение этого процесса в присутствии железа определяется активированной адсорбцией азота на поверхности катализатора. Тейлор установил, что не вся поверхность катализатора однородна и что каталитические реакции происходят только на отдельных местах, называемых активными центрами. На этих центрах и происходит активированная адсорбция. Э и центры могут отличаться друг от друга своей активностью. На разных центрах одного и того же катализатора могут катализироваться разные реакции. Например, никель ускоряет реакции Н2 + С02==Н20 + С0 и Ы02 + Н2 = Н0Ч-Н20. Введение метанасильно замедляет первую реакцию, но не замедляет вторую. Это объясняется тем, что молекулы СП/, адсорбируются на активнь1х центрах никеля, которые катализируют первую реакцию. Поэтому адсорбция метана тормозит процесс. Активные центры, на которых катализируется вторая реакция, остаются не отравленными метаном. Давно известно отравление платинового катализатора соединениями мыщьяка при контактном получении серной кислоты и другие случаи действия ядов. [c.64]

    Указанные авторы исследовали изменение краевых углов смачивания кварца ЧИСТЫШ1 углеводородными жидкостями и нефтью на границе с дистиллированной водой в зависимости от давления и теишературы ири насыщении углеводородных жидкостей и воды азотом и метаном. В обоих случаях и особенно с метаном было отмечено увеличение краевого угла избирательного смачивания с ростом давления. Объясняя полученные результаты, авторы отмечают, что отсутствие поверхностно-активных веществ в индивидуальных углеводородных жидкостях позволяет предполагать, что возрастание 0 с давлением связано с адсорбцией растворенного в воде и углеводородно11 жидкости газа на кварце. [c.62]

    По первому способу для обессеривания сернистого кокса применяют различные реагенты пар, воздух, паровоздушную смесь, азот, водород, метан, хлор, аммиак, нефтяные газы (низкотемпературное обессеривание с применением газов). Этот способ, в соответствии с ранее расмотренным механизмом реакций прокаливания при низких тем пературах (см. стр. 200—202), основан либо на химическом связывании продуктов первичного распада сернистых соединений и быстром отводе их из зоны реакции, либо (на более поздних стадиях) на использовании химической активности и кинетической энергии газов для разрушения вторичных комплексов. Подача твердых реагентов (А1С1з, КаОН и др.), которые могут связывать НзЗ, также должна способствовать глубокому обессе-риванню. [c.212]

    Достоинства этого метода для слабонадкритических компонентов видны на примере вычисления коэффициентов активности системы азот — метан в широком интервале температур (численные результаты приведены в главе VII). Для азота, например, вычисленные парциальные мольные объемы, а также параметры уравнения Вильсона для расчета коэффициентов активности (см. ниже) показали среднее отклонение от экспериментальных данных в 1,5% в интервале приведенной температуры от 0,79 до 1,23. [c.35]

    Иная трактовка процесса была выдвинута Н.С. Ениколоняном и Г. П. Ко-норевой (см. стр. 470—471). Эти авторы предположили, что при добавке к метано-кислородной смеси двуокиси азота в результате бурной реакции последней с метаном образуется промежуточный продукт — нитрометан, который далее и катализирует окисление метана. При атом, как пишут авторы, роль нитрометана как катализатора скорее всего заключается в том, что он вначале аккумулирует в себе NOj, а затем медленно раз.пагается с выделением NOj, которое зарождает активные центры. [c.475]

    Нами была проведена серия опытов на Ставропольском природном газе с некоторым содержанием высших углеводородов. Полученные результаты показали хорошую сходимость с данными по осушке воздуха на том же адсорбенте (цеолит iNaA). Так, при 50 °С и скорости газового потока 0,5 л/(см - мин) была достигнута степень осушки, соответствуюш ая точке росы ниже —70 °С при активности сорбента 17 г/100 г. Селективность адсорбции цеолитов по отношению к парам воды настолько ярко выражена, что присутствие других компонентов (кислород и азот — в воздухе метан и этан — в природном газе) практически не влияет на характер извлечения влаги. Высшие же углеводороды не проникают в мелкую структуру пор цеолитов NaA. Тем самым исключается дезактивация, которая наблюдается на обычных твердых осушителях. Поэтому срок службы цеолитов NaA значительно выше, чем обычных адсорбентов. [c.375]

    Вначале сетку аппарата разогревают до 300—500°, затем в аппарат вводят аммиачно-воздушную смесь (содержащую 10% NHa), которую продолжают пропускать через аппарат в течение 3—4 ч, пока устанавливается температура 800—900° и достигается определенная. активность катализатора. После этого в смеситель газов через специальный фильтр и расходомер начинают подавать метан. В выходящих из контактного аппарата газах содержится (при работе на метановой фракции нефтяного газа, содержащей 97—97,5% СН4) около 6% H N, 1,5—1,7% NH3, 0,2% СО2, 4,3—4,5% СО, 0,5% СН4, 7,5% Н2, 0,1% О2, 56,7% азота, 23—23,5% водяного пара. Степень превращения аммиака в H N в зависимости от условий составляет 63—70%- После контактирования газы с температурой 900—1000° проходят котел-утилизатор, где быстро охлаждаются до 150° (т. е. до температуры несколько выше точки росы с целью предотвращения гидролиза синильной кислоты). Охлажденную газовую смесь направляют в башкю, орошаемую слабым раствором смеси серной кислоты и сульфата аммония для поглощения непрореагировавшего аммиака ц Предотвращения образования полимеров цианистого водорода i37-iS9  [c.483]

    Работа хроматографа. В хроматографической колонке длиной 1 м с внутренним диаметром 6 мм, заполненной молекулярными ситами типа 5А с размером зерен 0,25—0,5 мм, происходит отделение метана от следов азота при 50 °С. Форколонка представляет собой и-обратную стеклянную трубку длиной 50 см с внутренним диаметром 4 мм, заполненную высушенным при 350 °С гранулированным (0,25—0,5 мм) активным оксидом алюминия с добавкой 10% Ы-метилпирролидона. Удельные объемы удерживания диэтилового эфира и бензола на этом сорбенте при 20 °С составляют 37 см г и 345 смУг соответственно, метан в колонке практически не сорбируется. Форколонка служит для отделения метана, образовавшегося в результате реакции гидроксилсодержащего полимера с метилмагнийиодидом, от паров растворителей — бензола и диэтилового эфира. Время удерживания диэтилового эфира в форко-лонке при комнатной температуре и скорости газа-носителя, равной 50 смУмин, составляет 4 мин, поэтому продолжительность продувки реактора и форколон-ки по схеме с прямой продувкой не должна превышать 3,5 мин. Продолжительность продувки реактора и форколонки определяется удельным объемом удержания диэтилового эфира на оксиде алюминия, модифицированном метилпир-ролидоном, а также шириной хроматографической полосы метана. [c.92]

    Отравляющее действие окиси углерода на различные металлические катализаторы известно давно [123]. Де Гемптин [86] нашел, что палладий, обработанный окисью углерода, не адсорбировал водорода. Пааль и Хартманн [215], исследуя каталитическую гидрогенизацию, наблюдали уменьшение активности палладиевого катализатора, вызываемое окисью углерода. Томас [283] установил, что отравляющее действие окиси углерода значительно больше, чем отравляющее действие азота. Тейлор и Бёрнс [276] охарактеризовали прочность, с которой окись углерода, как типичная блокирующая пленка, удерживается платиновой чернью при условии, что количество окиси углерода, образующей эту пленку, относительно незначительно. Исследования [41, 43] показали, что платина, прочно удерживающая окись углерода, оказывается мало активным катализатором для восстановления окиси углерода в метан, тогда как реакция восстановления происходит легко с палладием, с которого окись углерода легко удаляется водородом при обыкновенной температуре. [c.398]

    Для получения оптимального выхода хлористого метила требуется значи-1ельный избыток метана пО сравнению с хлором, а также довольно высокая температура реакционной трубки (наполненной или не наполненной пористым материалом), тогда как для получения четыреххлористого углерода прежде всего необходим избыток хлора над метаном и присутствие активных катализаторов. В последнем случае тенденция реагирующей с.меси к взрыву снижается прибавление таких разбавляющих газов, как двуокись углерода или азот. Большинство процессов, которые были испытаны в широких размерах, повиди,мо.му дают смесь хлорпроизводных метана. В большом числе способов предложено использовать световую энергию в качестве агента, ускоряющего реакцию, но ни один из них не имел никакого экономического успеха, вероятно благодаря трудности регулирования такой фотохимической реакции. [c.765]

    Описанный метод пригоден на любых сорбентах для таких химически инертных газов, как гелий, аргон, азот, водород, кислород, метан и многие другие. Что же касается других органических и неорганических газообразных веществ, обладающих активными функциональными группами, то при определении их вланшости необходимо более строго подходить к выбору сорбента. [c.148]

    Исходный 2-гидропероксипентан, синтезированный через метан-сульфонат пентанола-2, после двукратной перегонки в вакууме, содержал активный кислород в количестве, отвечающем 99% от теоретического (при определении станнометрическим методом ) Т1о 1,4128. Разложение проводили в растворе хлорбензола при концентрации гидроперекиси 0,9 моль/л в атмосфере чистого азота в запаянных стеклянных пробирках. Пробирки нагревали при встряхивании в термостате-качалке в течение 14 ч при 110° С. Соотношение между объемами газовой среды и раствора гидроперекиси в пробирках было взято 14 1. Состав газов разложения определялся на хроматографах АХ-П и ПИД-63. [c.148]

    Ацетилен и углеводороды, содержащие ацетиленовую тройную связь, могут быть заполимеризованы в присутствии активных катализаторов Циглера, полученных из металлоорганических производных металлов I— III групп, преимущественно алкилов алюминия, цинка, лития или алкилалюминийгалогенидов, и соединений переходных металлов IV—VIII групп, преимущественно галогенидов или алкоголятов титана, железа, ванадия и молибдена [99], Полимеризацию проводят при 20—80° и атмосферном или небольшом избыточном давлении. В случае газообразного мономера тина ацетилена можно использовать его смеси с инертными газами, например с азотом или с неполимеризующимися газами, нанример с водородом и метаном. [c.230]

    На земной поверхности и в прилегающих к ней зонах (гидросфере и верхней литосфере), где активно проявляются процессы жизнедеятельности (в биосфере), всегда находятся условия, благоприятные для развития метанобразующих микроорганизмов. Большое количество метана образуется в торфяниках. Торфяники содержат газ преимущественно биохимического происхождения. Основная масса торфяников образовалась после последнего оледенения, их возраст составляет 4-12 тыс. лет. Торф содержит до 86—95 % влаги и уже на небольшой глубине сохраняет восстановительную (бескислородную) геохимическую среду. Торф образуется в результате отмирания и неполного распада различных болотньж растений при недостатке кислорода. В таких условиях генерируются метановые (75-95 % метана) или азотно-мета-новые газы. Если же торфяники периодически подсыхают, состав газа в них меняется встречаются азотно-метановые, метаново-азотные и азотные газы. Такие газы имеют смешанное происхождение. Они состоят из биохимических (метан и часть азота) и атмосферных (преобладающая масса азота) газов. Во время подсыхания торфа в его толщу разными путями проникает атмосферный воздух (непосредственно или растворенный в дождевой воде). Кислород воздуха расходуется на окислительные процессы, а инертный азот накап- [c.38]

    Практическое значение метанобразующих бактерий. Отстойники, в которых происходит анаэробный распад органических веществ сточных вод населенных пунктов, относятся к обычному оснащению коммунальных водоочистных сооружений. В индустриальных странах гниение ила служит в первую очередь стабилизации первичного ила, а также активного ила, образующегося при аэробной очистке сточных вод. Метан, выделяющийся при гниении ила, частично используется определенными микроорганизмами, а частично его применяют в качестве топлива. В сельском хозяйстве применяют биогаз-ферментеры, а также ямы для навоза, i чтобы сбраживать (с получением метана) экскременты жи-йотных вместе с отбросами, содержащими целлюлозу. Метод образования биогаза, основной частью которого является метан, обладает двумя важными преимуществами во-первых, сохраняется содержащийся в экскрементах азот, а также те ценные качества удобрения, которыми обладает сероводородный ил во-вторых, происходит образование биогаза (в основном метана), который может быть использован в качестве источника энергии как в сельскохозяйственном производстве, так и в домашнем хозяйстве. [c.321]

    Если в анализируемом образце компонентов присутствуют кислород, азот, окись и двуокись углерода, водород и метан, анализ их производится из отдельной пробы, при заполнении колонки хроматографа ХЛ-3 в тех же условиях термостатирования мелкопористым силикагелем или активным крупнопористым силикагелем соответствующего зернения.Выборснликагеля производится в зависимости от требований, предъявляемых к анализу. Применение мелкопористого силикагеля, изготовленного на Горьковской опытной базе ВНИИ НП, дает возможность разделения воз- [c.244]

    Как было отмечено выше, изонитрилы также могут выступать в качестве окислительных субстратов нитрогеназы [140—142]. Они восстанавливаются в углеводороды, содержащие атом углерода изонитрильной группы, и первичные амины, образующиеся из фрагмента R—N. Изонитрилы, так же как и азот, присоединяются к атомам переходных металлов концом молекулы. При восстановлении связанного метилизонитрила в качестве основного продукта шестиэлектронной реакции образуется метан, тогда как при восстановлении некоординированной молекулы изонитрила процесс идет в основном до диметиламина — продукта пятиэлектронной реакции. Такое сочетание свойств делает изонитрилы превосходным субстратом при изучении как биологических нитрогеназ, так и модельных систем. При использовании в качестве катализатора комплекса молибден — цистеин состава 1 1 основными продуктами восстановления изонитрила борогидридом натрия являются этилен и этан [137]. Как и в случае ацетиленовых субстратов, экспериментальные данные согласуются с каталитической активностью мономерных молибденовых комплексов. Восстановление слабо ингибируется молекулярным азотом и более эффективно подавляется окисью углерода. Опыты с N2 показали, что азот как ингибитор этой реакции восстанавливается до аммиака и что молекулы N2 и RN связываются одними и теми же центрами, по-видимому, атомами молибдена. Кроме того, азот и окись углерода — конкурентные ингибиторы восстановления изонитрилов нитрогеназой, что убедительно показывает наличие у молибдена свойств, необходимых для связывания и восстановления субстратов. На рис. 49 [c.318]

    Из компонентов коксового газа большей адсорбционной активностью обладают пропилен, этан и этилен. Менее сорбируемыми компонентами являются двуокись углерода, метан, азот, кислород, окись углерода и водород. [c.198]

    При изучении низкотемпературной адсорбции ацетилена, бутана, изобутана, этана, этилена, метана, азота и пропана на ряде древесных углей одинаковой активности, изготовленных из кокосового ореха, во всех случаях были получены изотермы Лэнгмюра [4]. Показано, что молекулы углеводородов ориентированы параллельно поверхности угля. Предполагая, что площадь, занимаемая молекулой азота, равна 16,2 А , и сравнивая максимальные количества углеводорода, адсорбированные на каждом образце угля, с соответствующими количествами адсорбированного азота, авторы получили следующие средние величины молекулярных площадок (в А ) ацетилен—19,8, бутан — 42,1, изобутан — 47,4, этан — 25,9, этилен — 23,1, метан—19,4 и пропан — 36,0. На рис. 130 представлены изотермы адсорбции различных углеводородов на активированном угле фирмы Pittsburg Соке and hemi al Со и на колум- [c.143]


Смотреть страницы где упоминается термин Азот активный метаном: [c.53]    [c.212]    [c.252]    [c.164]    [c.129]    [c.52]    [c.29]    [c.945]    [c.109]    [c.114]    [c.77]    [c.141]    [c.43]    [c.40]    [c.150]    [c.528]    [c.46]   
Связанный азот (1934) -- [ c.103 ]




ПОИСК





Смотрите так же термины и статьи:

Метан-азот



© 2025 chem21.info Реклама на сайте