Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Взаимодействие между цепями и их взаимное расположение

    Внутреннее строение и физико-химические свойства полимеров. Свойства полимеров зависят от особенностей их внутреннего строения и в" первую очередь от вида структурной единицы полимера, степени полимеризации, строения цепей, а также от характера и интенсивности взаимодействия между ними. Структурные единицы, составляющие данный полимер, могут содержать полярные группировки атомов, что усиливает взаимное притяжение между цепями и, в частности, при наличии гидроксильных или имино-групп (ОН, МН) приводит к образованию между ними водородных связей. Структурные единицы могут содержать двойные связи, что облегчает образование химических связей между цепями. Наличие боковых ответвлений, их размеры и характер расположения вдоль цепи влияют на взаимодействие между цепями, а также на степень кристалличности и т. д. [c.566]


    При охлаждении некристаллических полимеров происходит резкое уменьшение их теплоемкостей при постоянном давлении Ср (рис. 10.18). Существование сильных валентных взаимодействий между атомами в макромолекулах и более слабого взаимодействия между цепями приводит к тому, что характер изменения теплоемкостей полимеров при низких температурах заметно отличается от дебаевского. В жидкости изменение температуры ведет к изменению и средних расстояний между частицами, и их взаимного расположения (ближнего порядка), что и определяет ее большую теплоемкость. Теплоемкость твердого тела определяется энергией, необходимой для изменения только средних расстояний между частицами (при их неизменном взаимном расположении). В связи с этим теплоемкость полимера в твердом состоянии значительно меньше, чем в жидком. [c.268]

    Между атомами в молекулах низкомоле1сулярных органических соединений, в звеньях полимеров и между звеньями в цепях существуют химические (ковалентные) связи, относимые к сильному взаимодействию. Между молекулами низкомолекулярных соединений, между макромолекулами полимеров и между участками одной и той же цепи существует нехимическое взаимодействие (соответственно межмолекулярное и внутримолекулярное), не приводящее к образованию новых химических связей, - слабое взаимодействие. Это взаимодействие зависит от химического строения молекул, расстояния между молекулами и от их взаимного расположения. Нехимическое взаимодействие подразделяют на межмоле-кулярные силы и водородные связи. Оно определяет агрегатное и фазовое состояния и физические свойства вещества. [c.126]

    Рассмотрим кристаллизацию насыщенных полимерных углеводородов, содержащих атомы углерода и водорода и не имеющих полярных групп. Взаимодействие между цепями таких полимеров вызывается дисперсионными силами, возникающими как результат непрерывного изменения взаимного расположения зарядов в каждом атоме вследствие орбитального движения электронов. В каждый момент возникает асимметрия в распределении зарядов, обусловливающая притяжение атомов. Дисперсионные силы резко возрастают с уменьшением расстояния между макромолекулами. [c.23]

    Взаимодействие между цепями и их взаимное расположение. [c.9]

    Третья особенность заключается в многообразии структуры макромолекул. В большинстве полимеров каждое звено цепи содержит функциональные группы, расположение которых может быть весьма хаотичным. Наряду с сочетанием голова к хвосту имеются сочетания голова к голове) или хвост к хвосту . Вследствие этого некоторые функциональные группы находятся при двух соседних углеродных атомах, в других звеньях функциональные группы находятся по отношению друг к другу в положе-тнш 1—4. По [ифункциональность макромолекул и возможность близкого взаимного расположения функциональных групп вызы-нает многочисленные побочные реакции, протекающие одновременно с основным процессом химического превращения. К числу таких побочных процессов относится возможное внутримолеку-. 1ярное взаимодействие функциональных групп, часто приводящее к образованию циклических структур или ненасыщенных связей, а также межмолекулярные реакции, вызывающие появление поперечных мостиков между цепями макромолекул. [c.171]


    Силы дисперсионного взаимодействия, по всей видимости,— Наиболее общий вид взаимодействия между компонентами битума. Поскольку эти силы зависят от расстояния между центрами Частиц, постольку взаимодействие будет максимальным между Теми частицами или молекулами, которые способны к наибольшему взаимному сбл ижению. Механизм такого взаимодействия обусловлен стремлением молекул ориентироваться таким образом, чтобы во взаимный контакт с другими молекулами вступало наибольшее число атомов. Поэтому вполне естественно, что для алифатических цепей это выражается в их взаимном параллельном расположении, а для ароматических колец — расположением в параллельных плоскостях. Основными носителями дисперсионного взаимодействия в битумах являются атомы водорода и углерода, тем не менее, наличие полярных атомов азота, серы и кислорода Приводит, как правило, к образованию более прочных связей. [c.200]

    В заключение отметим, что молекулярное притяжение зависит от взаимного расположения. Например, для молекулы масляной кислоты НзС—СНз—СНа—СООН энергия взаимодействия углеводородных цепей НаС—СНа—СНз— друг с другом отличается от энергии взаимодействия между собой полярных групп —СООН и энергии взаимодействия между полярными и углеводородными частями молекул. [c.30]

    В не очень концентрированных студнях (например, в 10%-ных студнях желатины) молекулярные цепи достаточно удалены друг от друга и слабо взаимодействуют между собой. При небольшом сжатии или растяжении таких студней цепи, оставаясь в том же взаимном расположении в пространственной сетке студня, легко изменяют свою форму, благодаря своей гибкости, и после снятия деформирующего усилия быстро восстанавливают форму, что характеризует упругие свойства студней. [c.207]

    Необратимые флуктуации и механизм самоорганизации белка. Предполагают, что в начальный период все флуктуации - периодические вращения атомных групп вокруг ординарных связей - являются беспорядочными и несинхронизированными друг с другом. В равновесных системах все флуктуации обратимы и согласно основной теории вероятности (так называемого закона больших чисел) составляют пренебрежимо малые поправки к средним значениям. За редким исключением (например, рассеяние света гомогенной средой и броуновское движение, вызываемые обратимыми флуктуациями плотности) они не коррелируют со свойствами системы и не оказывают влияние на ее переход в равновесное состояние В неравновесных системах среди множества обратимых, неустойчивых флуктуаций возникают необратимые флуктуации, оказывающие радикальное воздействие на эволюцию системы. Они не остаются малыми поправками к средним значениям, а существенно меняют сами эти значения, стирая различие между случайным отклонением и макроскопическим проявлением системы. При свертывании белка подавляющее большинство флуктуаций также обратимо и неустойчиво. Но некоторые из них приводят к сближению определенных аминокислотных остатков, и тогда те могут эффективно взаимодействовать между собой. По своим последствиям образующиеся контакты между валентно-несвязанными атомами могут быть подразделены на близко-, средне- и дальнодействующие. Флуктуации, приводящие к образованию первого вида, изменяют взаимное расположение атомных групп в пределах одного аминокислотного остатка второго вида - расположение остатка относительно соседних в последовательности третьего - относительно удаленных по цепи остатков. В зависимости от конформационного состояния белковой цепи по ходу ее сборки одни и те же флуктуации могут быть как обратимыми, так и необратимыми. Последними, т.е. бифуркационными, флуктуации становятся только в том случае, если каждая из них возникает в строго определенном месте последовательности бифуркаций между флуктуирующим клубком и трехмерной структурой. Обратимые флуктуации бесследно исчезают, а необратимые, стабилизированные специфическими невалентными взаимодействиями остатков, остаются в виде гигантских "застывших флуктуаций". [c.96]

    Перечисленные методы дают сведения не только о строении макромолекулы (взаимное расположение атомов, строение мономерных звеньев и характер их чередования в цепи, наличие разветвлений и т. д.), но также о типе химической связи между ее атомами, о физической структуре полимера (взаимное расположение и конформация цепей, упорядоченность их укладки, кристалличность), о характере теплового движения частиц (подвижность макромолекул и их фрагментов, процессы диффузии), о механизме синтеза полимеров и их химических превращениях, о процессах, протекающих вблизи фазовых границ (например, адгезия полимера к твердой подложке), о природе взаимодействия макромолекул с растворителями и т. д. [c.16]

    В растворах полимеров изменение взаимного расположения длинных цепных, иногда перепутанных, макромолекул не может происходить быстро кроме того, взаимодействие длинных цепей может сильно измениться уже от образования нескольких связей между ними, для чего достаточно крайне небольшого по весу количества солей или других примесей в растворе. [c.153]


    Почти все интересные и наиболее важные черты пространственной структуры полипептидов и белков, зависящие от взаимного расположения отдельных атомов [но не многоатомных массивов, таких, как а-спирали или -спирали (Р-структуры)], можно выявить, анализируя, во-первых, конформации дипептидов и, во-вторых, взаимодействие соседних аминокислотных остатков в дипептидных фрагментах (между собой и с пептидной цепью). Именно поэтому мы остановимся наиболее подробно на расчетах конформаций дипептидов и некоторых фрагментов, в которых проявляются интересующие нас взаимодействия. [c.370]

    Нельзя предполагать, что все подвижные катионы фиксируются у сульфогрупп в таких положениях, как показано на схеме. Вероятно, в таком взаимном расположении фиксированные и подвижные ионы находятся в полимерных сетках с достаточно большим расстоянием между продольными цепями, что уменьшает стерические препятствия для диффузии подвижного иона и в то же время полимерная сетка должна быть достаточно плотной, чтобы вызвать нужную степень дегидратации подвижного катиона. Надо полагать, что лишь часть катионов создает в ионите такие своеобразные ионные пары, а остальные взаимодействуют только с одной сульфогруппой, поэтому и энергия их взаимодействия в ионитах с различной структурой полимерного каркаса примерно одинакова. Этим и объясняется то, что коэффициенты избирательности резко отличны лишь на начальных участках изотерм К = когда еще существуют вакантные места, при- [c.175]

    Слабые нековалентные связи определяют, как различные участки одной молекулы располагаются друг относительно друга, кроме того, они определяют, как такая макромолекула взаимодействует с другими молекулами. Однако, как можно видеть в верхней части схемы 3-1, атомы ведут себя как твердые шары определенного радиуса ( вандерваальсов радиус ). Невозможность взаимного перекрывания двух атомов ограничивает число пространственных расположений атомов (или конформаций), которые возможны для каждой полипептидной цепи. В принципе длинная подвижная цепь, такая, как молекула белка, может складываться огромным числом способов, при которых каждая кон-формапия будет иметь разный набор слабых взаимодействий между цепями. Однако на деле большинство клеточных белков стабильно складывается только одним способом в ходе эволюции была отобрана такая последовательность аминокислотных субъединиц, одна конформация которой способна образовывать значительно более благоприятные взаимодействия между цепями, чем любая другая. [c.115]

    В табл. 11.30 для ряда конформационных состояний с различными формами основной цепи уже знакомых нам фрагментов -Asn-Asn- и -Asn--Asp- приведены значения энергетических параметров и величины угла 0. Легко видеть общность и различие в характере межостаточных вза-Аюдействий в зависимости от угла 0. В первых трех конформациях обоих фрагментов с формами шейпа е наиболее эффективны взаимодействия типа bi-si и Ьз-Si и в то же время практически отсутствуют взаимо-ввйствия между элементами основных (Ь,-Ьз) и боковых (S1-S2) цепей. 8 конформациях дипептидов с формами основной цепи типа /, имеющих Общественно иные значения угла 0, межостаточные взаимодействия приобретают альтернативный характер более эффективными становятся вЬнтакты основных (Ь]-Ьз) и боковых (s -s2) цепей между собой, а слабы-Ча - взаимодействия типа bi-S2 и Ьз -Si. В табл. 11.30 приведены расчет-lUe данные. А каково взаимное расположение смежных аминокислотных [c.225]

    Как полагают Меклер и Идлис, "обязательный компонент любой А-А-связи - водородная связь, образующаяся между полярной группой боковой цепи одного аминокислотного остатка и карбонилом остова полипептидной цепи - компонентом аминокислотного остатка-партнсра" [352. С. 43]. Вокруг таких водородных связей имеются гидрофобные рубашки, "защищающие их от атаки молекулами растворителя, в первую очередь, воды. Таким образом Природа обеспечивает образование особых, ранее неизвестных, специфических связей между аминокислотами - Л-Л-связей" [352. С. 44]. Из описанной структурной модели A-A-комплекса, однотипной для всех 26 пар аминокислотных остатков, не ясно, почему водородная связь является "обязательным компонентом любой A-A-связи". Это исключено по целому ряду причин. Во-первых, стабилизирующая энергия водородной связи, даже если она экранирована от контактов с водой, во много раз уступает суммарной энергии других видов невалентных взаимодействий, прежде всего, дисперсионной энергии. Во-вторых, точечное взаимодействие двух атомов этого "обязательного компонента" не может обеспечить стереокомплементарность остатков А и A. Напротив, как хорошо известно [353], взаимное расположение групп С = 0 и Н-О (H-N) определяется не столько самой водородной связью, сколько потенциальной энергетической поверхностью окружающих ее атомных групп. Она реализуется только в том случае, если удовлетворяет требованиям других видов невалентных взаимодействий, среди которых наибольшие ограничения накладывают ван-дер-ваальсовы взаимодействия. В-третьих, сближенность акцептора и донора протона требует определенной ориентации друг относительно друга основной цепи одного остатка и боковой цепи другого, что должно лишать конформационной свободы оба аминокислотных остатка и вести к реализации у всех пар A-A-связей данного типа одинаковых конформационных состояний. Такая унификация пространственного строения A-A-комплексов, как отмечалось, противоречит эксперименту. И наконец, в-четвертых, с предложенной моделью A-A-связи не согласуется четко проявляющаяся в трехмерных структурах белков тенденция боковых цепей заряженных остатков (Arg, Lys, Glu, Asp), находящихся на поверхности глобулы, принимать полностью развернутые конформации и ориентироваться в [c.536]

    Здесь к — постоянная Больцмана viw — термодинамическая вероятность состояния систе.мы (макромолекулы), т. е. число микросостояний, с помощью которых реализуется данное макросостояние системы. Применительно к полимерной молекуле макросостояние — это состояние с некоторым определенным размером клубка (расстоянием между концами молекулы), а микросостояние молекулы — некоторое одно конкретное взаимное расположение ее звеньев. Как уже отмечалось, предельно вытянутому макросостоянию присуще только одно микросостояние и, следовательно, равная нулю энтропия, а статистически устойчивому макросостоянию клубка — около 3 микросостояний и энтропия порядка kN. Соответственно этому свернутые в клубки макромолекулы имеют минимальную энергию Гельмгольца А = 1/-Т5, а растянутые — максимальную, что и определяет термодинамически выгодное состояние молекул полимера в отсутствие механических напряжений в нем. Здесь 11 — потенциальная энергия взаимодействия полимерных звеньев, которая, кстати, равна нулю для модели свободно-сочлененной цепи. Следует иметь в виду, что энтропия, определяемая формулой (3.16.9), представляет только ее конфигурационную часть (на одну макромолекулу). Энтропия полимерного вещества включает в себя еще и ее ютассическую составляющую, связанную с различными комбинациями взаимного расположения молекулярных [c.730]

    В реальных полимерных молекулах, разумеется, атом G4 не может занимать совершенно произвольного положения на поверхности конуса вращения, поскольку вероятность реализации поворота на тот или иной угол Ф определяется условиями взаимной корреляции в пространстве ориентаций структурных элементов цепи. Стерические препятствия, обусловленные взаимодействием между боковыми заместителями цепи, являю гся важнейшим фактором, влияющим на ограничение внутреннего вращения. На рис. III.3 показаны проекции двух низкоэнергетических положений участка простейшей полимерной цепочки (полиметилена) на плоскость, пернен- дикулярную направлению связи С—С. На этом рисунке пунктирож показаны атомы, соединенные с атомами углерода главной цени ранс-ноложение Т) на рисунке соответствует минимуму энергии стерического взаимодействия. Если же метиленовые группы, расположенные под или над центральным атомом углерода на рис. III.3, повернуть на 60°, то в результате сближения водородных атомов стерические препятствия становятся максимальными и соответственно-максимального значения достигает потенциальная энергия фрагмента цепи. При вращении дополнительно еще на 60° (т. е. в целом на угол 120°) вправо или влево возникают так называемые гош-коя-формации (соответственно G и ( ), в которых потенциальная энергия также проходит через минимум, хотя и не такой глубокий, как в транс-положеиш. [c.157]

    Однако принципиальное отнесение растворов высокомолекулярных веществ к термодинамически устойчивым равновесным системам не означает, что всегда, когда мы имеем дело с раствором высокополиме-ра, мы располагаем равновесной системой. Практически это условие далеко не всегда осуществляется, в виду того, что в растворах полимеров достин ение равновесия по ряду причин может быть сильно замедленным (в приведенных выше опытах равновесие достигалось в течение ряда недель или месяцев). В этом отношении растворы высокополимеров существенно отличаются от истинных растворов низкомолекулярных веществ, которые (за исключением пересыщенных растворов) действительно всегда находятся в равновесном состоянии. Напротив, в растворах полимеров изменение взаимного расположения длинных цепных, иногда перепутанных, макромолекул не может происходить быстро кроме того, взаимодействие длинных цепей может сильно измениться уже от образования нескольких связей между ними, для чего достаточно крайне небольшого по весу количества солей или других примесей в растворе. Наличие в полимере молекул различных размеров (полидисперсности), различающихся по своей растворимости, диффузии и пр.,затруд- [c.171]

    Бокий [722] сообщил, что в кристаллохимии считается твердо установленным как отсутствие молекул в силикатах, так и наличие упорядоченных участков в стекле (кристаллитов). По мнению автора, между кристаллитной и захариасенов-ской теориями нет непримиримых границ. В стекле есть более упорядоченные участки и есть области — менее упорядоченные. Но и в упорядоченных областях должна быть меньшая упорядоченность, чем в кристаллах силикатов, причем атомы, образующие кислородные мостики, связывающие эти две области, нельзя отнести ни к одной из них. Иными словами — имеет место непрерывный переход без фазовых границ между кристаллитами. Об отсутствии ориентации цепей в стеклах, что было подтверждено опытным путем, сообщил Багдыкь-янц [683]. Экспериментальным подтверждением отсутствия упорядоченности структуры стекол занимались Росон [684] и Ска-нави [685]. Даувальтер [686] предложил рабочую теорию строения стекла, в основу которой положен тот принцип, что силы взаимодействия между атомами являются силами химической связи, причем учитываются не только силы, но и величины их работы и представляемой ими энергии. Деформированные связи распределены в стеклах беспорядочно. Неупорядоченное расположение атомов— энергетически невыгодно, в связи с чем будет происходить перестройка взаимного расположения атомов в результате работы сил связи. В качестве примера указывается на энергетически невыгодное непосредственное соседство атомов кремния между собой и атомов кислорода между собой, которое [c.321]

    Таким образом даже в линейных низкомолекулярных углеводородах с малыми боковыми группами корреляция между соседними вращениями играет большую роль, и условие (1.28) не выполняется. Это тем более должно быть справедливо для полимерных цепей с массивными привесками (полнизо-бутилен, полистирол и т. д.), конформации которых, как показывают расчеты и исследование моделей (см. гл. 3), определяются главным образом взаимодействием между их массивными привесками. Указанное обстоятельство подтверждается резким различием в конформациях изо- и синдиотактических цепей типа (— Hj— HR—) в кристаллическом состоянии, обусловленным различным взаимным расположением массивных групп. Кроме того, спиральная кристаллическая конформация изотактических цепей соответствует существенно различным углам поворота двух соседних связей. Вместе с-тем.если предположить независимость вращенийвокруг соседних связей, то, как отмечалось в связи с уравнением (1.21), эти углы должны были быть равны по величине и противоположны по знаку [ 2]. [c.42]

    Полиэлектролиты, или высокомолекулярные электролиты,— полиакриловая кислота, полинуклеотиды, полиэтиленимин, полилизин, полиглютаминовая кислота, полисульфостиролы и др.— обладают рядом важных особенностей. Они характеризуются высокой плотностью расположения зарядов — по одному на каждый остаток цепи (в то время как у белков приходится по одной СООН-или NHg-rpynne на 6—8 аминокислотных остатков) поэтому явления электростатического взаимодействия между ионогенными группами, составляющего, например, в полилизине более 3 ккал моль на остаток и взаимной электростатической инактивации этих групп выражены весьма резко. [c.106]

    Ясно, что все 4 уровня организации, или структуры, белковой молекулы важны для функциональной активности белков. Все 4 уровня структуры взаимно влияют друг на друга, но все же они различны и определяются в главных чертах различными типами молекулярных взаимодействий первичная структура — целиком ковалентной связью вдоль полипептидной цепи вторичная структура — целиком водородными связями между пептидными группами, находящимися в соседних витках спирально закрученной цепочки третичная структура — ваидерваальсовым взаимодействием боковых радикалов аминокислотных звеньев цепи, а также химическими мостиками , например дисульфид-ными сшивками. Наконец, четвертичная структура — результат локальных сил между функциональными группами, расположенными на поверхности белковых глобул, результат, например, кулоновского взаимодействия разноименно заряженных групп. [c.36]

    С другой стороны, не могут быть игнорированы общие представления Мейера о в-( э.можности наличия в растворах каучука вторичных образований — ассоциатов молекул 1. Эти ассоциаты не должны рассматриюаться качестве мицелл Е строгом и первоначальном смысле этого слова, т. е. в качестве частиц, и1меющих правильное кристаллическое строение. Они возникают как циботактические группы, в которых взаимное расположение молекулярных цепей более или менее произвольно. Количество этих ассоциатов и их устойчивость растут с повышением концентрации раствора. Существенное значение также имеет и интенсивность межчастичного взаимодействия молекул каучука и растворителя. Лишь в немногих веществах каучук растворяется без теплового эффекта. В большинстве растворителей (бензоле, толуоле, гексане) процесс растворения сопровождается поглощением теплоты вследствие большой интенсивности сил взаимодействия между молекулами каучука по сравнению с взаимодействием последних с молекулами растворителя. Это обстоятельство, как известно, способствует возникновению ассоциатов растворенного вещества в растворе. [c.273]

    Линейные полиэлектролиты пли высокомолекулярные электролиты— полиакриловая кислота, полинуклеотиды, полиэтиленимин, полилизин, полиглютаминовая кислота, полисульфостиролы (рис. 100) и др., обладают рядом важных особенностей. Они характеризуются высокой плотностью расположения зарядов—по одному на каждый остаток цепи, поэтому, явления электростатического взаимодействия между ионогепными группами и взаимной электростатической инактивации этих групп выражены весьма резко. [c.235]

    Однако принципиальное отнесение растворов высокомолекулярных веществ к термодинамически устойчивым равновесным системам не означает, что всегда, когда мы имеем дело с растворолс вы-сокополимера, мы располагаем равновесной системой. Практически это условие далеко не всегда осуществляется ввиду того, что в растворах полимеров достижение равновесия по ряду причин может быть сильно замедленным (в приведенных выше опытах равновесие достигалось в течение ряда недель или месяцев). В этом отношении растворы высокополимеров существенно отличаются от истинных растворов низкомолекулярных веществ, которые, за исключением пересыщенных растворов, действительно всегда находятся в равновесном состоянии. Напротив, в растворах полимеров изменение взаимного расположения длинных цепных, иногда перепутанных, макромолекул не может происходить быстро взаимодействие длинных цепей может сильно измениться уже от образования нескольких связей между ними, для чего достаточно крайне небольшого по весу количества солей или других примесей в растворе. При работе с разбавленными растворами высокоочищенных фракционированных (моподиснерсиых) полимеров действие перечисленных факторов ослабляется и состояние термодинамического равновесия легче достигается, поэтому в научной работе обычно необходимо специально обеспечивать эти условия. Однако при работе с концентрированными растворами, особенно в производственных условиях (резиновые клеи, прядильные растворы целлюлозы и ее эфиров, концентрированные растворы желатины и др.), следует учитывать, что такие растворы не находятся в состоянии термодинамического равновесия и могут достигать его лишь спустя длительное время. Тем не менее эти особенности кинетики процессов в растворах высокополимеров, несмотря на их практическое значение, не изменяют принципиальной характеристики природы стабильности этих растворов, как термодинамически устойчивых обратимых истинных растворов. Эта характеристика, как указывалось, резко отличает растворы высокомолекулярных веществ от лиофобных коллоидных систем. Она означает также подчинение растворов высокомолекулярных веществ основному уравнению (XVIII, 1). [c.253]


Смотреть страницы где упоминается термин Взаимодействие между цепями и их взаимное расположение: [c.372]    [c.372]    [c.565]    [c.93]    [c.143]    [c.119]    [c.171]    [c.206]    [c.470]    [c.462]    [c.462]    [c.504]    [c.101]    [c.218]    [c.113]    [c.119]    [c.116]   
Смотреть главы в:

Основы химии диэлектриков -> Взаимодействие между цепями и их взаимное расположение

Основы химии диэлектриков -> Взаимодействие между цепями и их взаимное расположение




ПОИСК







© 2025 chem21.info Реклама на сайте