Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сведберга ультрацентрифуг

    Ультрацентрифугирование растворов полимеров. Ультрацентрифуги, в которых развиваются центробежные ускорения, превышающие ускорение силы тяжести в десятки тысяч раз, широко применяются для изучения свойств макромолекул в растворах. Впервые этот метод был использован Т. Сведбергом для определения молекулярных масс белков. [c.153]

    Метод определения молекулярной массы при помощи ультрацентрифуги разработан Сведбергом, который сконструировал специальную центрифугу с центробежным ускорением до Определение молекулярной массы [c.109]


    Ультрацентрифугирование. Оседание частиц коллоидов под действием сил тяжести происходит очень медленно. А. В. Думан-ский в 1912 г. предложил для определения константы седиментации применять центрифугирование. Одиннадцать лет спустя Сведбергом была впервые сконструирована специальная центрифуга, названная ультрацентрифугой. [c.148]

    Чрезвычайное значение центробежного поля для физики и физической химии основано на том факте, что в ультрацентрифугах, сконструированных впервые Сведбергом (1924), можно достигнуть ускорений примерно до 10 g. При этих условиях седиментационное равновесие, не имеющее значения в поле тяготения, используется для того, чтобы либо разделить компоненты смеси (препаративная ультрацентрифуга), либо по уравнению (54.8) определить молекулярный вес (аналитическая ультрацентрифуга). По экспериментальным причинам для последней цели используют почти исключительно измерение скорости седиментации. Теория этого последнего метода основана на термодинамике необратимых процессов. Поэтому не будем здесь останавливаться на подробностях и отошлем читателя к специальным учебникам. [c.282]

    Для проведения седиментометрического анализа кинетически устойчивых систем (золей, растворов ВМВ) с целью определения размеров и массы их частиц недостаточно силы земного тяготения. Последнюю заменяют более значительной центробежной силой центрифуг и ультрацентрифуг. Идея этого метода принадлежит А. В. Думанскому (1912), который впервые применил центрифугу для осаждения коллоидных частиц. Затем Т. Сведберг разработал специальные центрифуги с огромным числом оборотов, названные ультрацентрифугами. В них развивается центробежная сила свыше 250 ООО Современная ультрацентрифуга представляет собой сложный аппарат, центральной частью которого является ротор (с частотой вращения 60 000 об/мин и выше), с тончайшей регулировкой температуры и оптической системой контроля за процессом осаждения. Кюветы для исследуемых растворов вмещают всего 0,5 мл раствора. В ультрацентрифуге оседают не только частицы тонкодисперсных золей, но и макромолекулы белков и других ВМВ, что позволяет производить определение их молекулярной массы и размеров частиц. Скорость седиментации частиц в ультрацентрифуге рассчитывают также по уравнению (23.9), заменяя в нем g на о) х, где (О — угловая скорость вращения ротора л — расстояние от частицы до оси вращения. [c.378]

    Подобные исследования проводят в центрифугах с очень большой скоростью вращения, так называемых ультрацентрифугах. Этот метод, предложенный Думанским (1912 г.), был далее усовершенствован Сведбергом. В современных центрифугах число оборотов доходит до нескольких тысяч в секунду, а центробежное ускорение — до миллионов . Исследуемый раствор помещают в радиально расположенные кварцевые кюветы. В корпусе центрифуги имеются (наверху и внизу) кварцевые окошки. Через окоШки и вращающиеся кюветы пропускают пучок света на фотопластинку и по интенсивности почернения (снимая в контрольном опыте кривую зависимости почернения от концентрации) находят с = Кр) и по уравнению (111.18) вычисляют молекулярный вес Ма- Этот метод является одним из основных методов определения молекулярного веса макромолекул. [c.36]


    Использовать ультрацентрифугу для определения размера коллоидных частиц впервые в 1910 г. предложил А. В. Думанский. Шведский ученый Сведберг широко использовал эту идею, он разработал ряд конструкций ультрацентрифуг для определения размера коллоидных частиц и молекул высокомолекулярных веществ, например белков. [c.77]

    Ультрацентрифугирование. Идея этого метода впервые была высказана еще в 1913 г. А, В. Думанским, который применил центрифугу для осаждения коллоидных частиц. За последние годы, с изобретением шведским ученым Сведбергом ультрацентрифуги, этот метод получил исключительно широкое применение в коллоидной химии. Современная ультрацентрифуга (рис. 84) представляет собой сложный аппарат, в котором ротор вращается в толстостенном металлическом корпусе в вакууме или в атмосфере водорода (для улучшения теплоотдачи) со скоростью до 60 ООО об/мин и выше. [c.294]

    Думанский (1912 г.) первым предложил вызывать седиментацию коллоидных систем с помощью центробежного поля. Им были проделаны и первые опыты с применением сравнительно небольших ускорений. Сведберг (1923 г.) сконструировал ультрацентрифугу, дающую более высокие ускорения, и провел первые количественные исследования процесса седиментации и седиментационного равновесия. Тем самым был создан широко используемый теперь метод исследования коллоидных и высокомолекулярных систем при помощи ультрацентрифуги. [c.63]

    Однако рассматриваемое равновесие может быть сдвинуто в сторону преобладания седиментации при замене гравитационного поля центробежным со значительно большим ускорением, создаваемым действием центрифуги или ультрацентрифуги. Этот метод, впервые использованный Думанским и получивший развитие в работах Сведберга и его школы, позволяет в настоящее время создавать ускорения до 10 —и благодаря этому производить не только седиментацию коллоидных частиц, но даже и седиментационное разделение молекул разной массы. Применение ультрацентрифуг дает возможность проводить наряду с дисперсионным анализом коллоидных систем и растворов высокомолекулярных соединений также препаративное разделение их на фракции. [c.156]

    Первая аналит. ультрацентрифуга была создана Т. Сведбергом в 1923. [c.605]

    Под действием гравитационного поля растворенные молекулы либо оседают, либо всплывают в зависимости от их плотности и плотности растворителя, но поступательная кинетическая энергия молекул препятствует этому. Чтобы вызвать оседание при измеримых скоростях даже таких маленьких молекул, как молекулы сахарозы, были построены достаточно мощные ультрацентрифуги. Сведберг [б] положил начало разработке ультрацентрифуг, приспособленных для количественных измерений седиментации в условиях, исключающих конвекцию и вибрацию. Различают два типа опытов, проводимых в ультрацентрифугах 1) измерение скорости седиментации компонента раствора (скорость седиментации) и 2) определение перераспределения молекул при равновесии (седиментационное равновесие). [c.613]

    Однако в системе, обладающей при обычных условиях высокой кинетической устойчивостью, можно все же вызвать заметное оседание частиц, если силу земного тяготения заменить более значительной центробежной силой. Эта идея была впервые высказана Думанским (1913), применившим центрифугу для оседания коллоидных частиц, и затем развита Сведбергом, разработавшим специальные центрифуги с большим числом оборотов, называемые ультрацентрифугами, дающими центробежную силу свыше 250 ООО [c.41]

Рис. 81. Схема ультрацентрифуги Сведберга [2] Рис. 81. <a href="/info/746125">Схема ультрацентрифуги</a> Сведберга [2]
    Определение молекулярной массы с помощью аналитической ультрацентрифуги основано на работах Сведберга, шведского химика, специалиста в белковой химии, разработавшего в 1925 г. центрифугу. Молекулярная масса может быть вычислена по следующей формуле  [c.360]

    Для ускорения оседания полимерных молекул применяют специальные ультрацентрифуги (Дунайскою, Сведберга), в которых центробежная сила благодаря огромной скорости вращения ротора до 10 раз превышает силу земною тяготения (рис 166) [c.540]

    Использованная Т. Сведбергом центрифуга имела дископодобный ротор, в котором было сделано несколько вырезов. В этих вырезах закреплялись кюветы с коллоидными растворами. Кожух центрифуги имел вырезы для освещения коллоидных растворов, их наблюдения и фотографирования. Хотя кювета, заполненная коллоидным раствором, вращается с чрезвычайно большой скоростью, она при наблюдении и фотографировании кажется неподвижной. Этот оптический эффект известен каждому. Если на киноэкране демонстрируется какой-либо неподвижный объект, то это не означает, что кинолента перестает двигаться в аппарате. Она движется, но одинаковые кадры сменяются менее чем за 0,1 с. При такой скорости наш глаз не улавливает смены кадров, и кадр кажется наблюдателю неподвижным. В ультрацентрифуге смена кадров происходит значительно быстрее, и нашему глазу кюветы с коллоидным раствором кажутся неподвижными. При вращении ротора центрифуги коллоидные частицы отбрасываются центробежной силой к периферии (т. е. к дну кюветы). При установлении седиментационного равновесия можно экспериментально определить распределение концентрации по высоте кюветы и вычислить радиус по уравнению (XIII.2.2). [c.404]


    В последние годы молекулярные веса многих белков были определены Сведбергом, пользовавшимся ультрацентрифугой (стр. 117). Полученные им величины колеблются от 34 500 для яичного альбумина до 5 ООО ООО для дыхательных белков некоторых морских улиток. Интересным и еще необъяснимым является тот факт, что в отношении молекулярных весов белки можно как будто бы разделить на две группы одни из них имеют молекулярные веса от 34 500 до 210 ООО, причем кратные 34 500 молекулярные веса другой группы белков выражаются в миллионах. [c.169]

    Конструкция ультрацентрифуги Сведберга, предложенная им в 1925 г., с некоторыми усовершенствованиями широко применяется в настоящее время [2]. На рис. 79 показан общий вид этой ультрацентрифуги. [c.135]

    Все белки денатурируются под действием кислот или при нагревании, что проявляется в коагуляции и уменьЩенин растворимости, а также в потере специфических биологических свойств. Определение молекулярного веса белков является трудной задачей. Исходя из содержания железа в гемоглобине крупного рогатого скота, было найдено, что молекулярный вес этого белка лежит в пределах 16 000— 17 000. Молекулярный вес казеина, определенный по содержанию легко отщепляющейся серы, равен 16 000 и т. д. Подобные выводы, однако, справедливы лншь прн том условии, что данный белок однороден и содержит в своей молекуле только один атом того элемента, который используется для расчета молекулярного веса. Криоскопическое определение молекулярного веса затрудняется тем, что даже растворимые белки образуют коллоидные растворы наблюдаемое малое понижение точки плавления соответствует большому весу мицеллы. Более подходящими являются методы, основанные на определении скорости диффузии и вязкости. Помимо них практическое значение приобрел предложенный Сведбергом способ определения велич1п-1ы частиц по скорости седиментации в ультрацентрифуге. [c.396]

    Ротор (рис. Й2) делают из хромоникелевой стали или дюралюминия, овальной формы с двумя отверстиями для рабочей и балансировочной кювет (в ультрацентрифуге Сведберга). Балансировочная кювета предусматривает статическую и динамическую балансировку ротора относи- [c.138]

    Метод центрифугирования, уже давно нашедший практическое применение в процессах сепарирования обыкновенных суспензий и эмульсий (например, в сепарировании молока), за последние годы, с изобретением Сведбергом ультрацентрифуги, получил исключительно широкое применение и в коллоидной химии. Ультрацентрифуги современных конструкций, даюпще десятки тысяч оборотов в минуту и развивающие центробежную силу, в сотни тысяч раз превосходящую силу земного притяжения, с большим эффектом применяются как для разделения фаз в золях, так и для фракционирования их и растворов высокомолекулярных соединений. На методе ультрацентрифугирования мы остановимся также несколько позднее. [c.26]

    Улыпрацентрифугирование. Идея этого метода впервые была высказана еще в 1913 г. А. В. Д у м а н с к и м, который применил центрифугу для осаждения коллоидных частиц. За последние годы, с изобретением Сведбергом ультрацентрифуги, этот метод получил исключительно широкое применение в коллоидной химии. Современная ультрацентрифуга (рис. 154) представляет собой сложный аппарат, в котором ротор вращается в толстостенном металлическом корпусе в вакууме или в атмосфере водорода (для улучшения теплоотдачи) со скоростью до 60 000 об/мин и выше. Как видно из рис. 154, в роторе есть два сквозных отверстия, в которых находятся кюветы с коллоидным раствором емкостью всего 0,5 мл. По мере оседания частий, дисперсной фазы поглощение света вдоль [c.375]

    Границы применения обычного седиментационного метода анализа для высокодисперсных систем зависят как от величины частиц, так и от разности плотностей между частицей и дисперсионной средой. Для тяжелых частиц (например, металлических с плотностью порядка 9—10 г см ) практически нельзя определять радиусы Меньше 50 ммк, а для частиц с меньшей плотностью эта граница еще больше сдвигается в сторону крупных частйц. В большинстве случаев седиментационные методы анализа дают возможность охарактеризовать полидисперснЫе системы с размером частиц от 100 до 0,5 мк. Частицы больше 100 мк (г = 50 мк) предварительно отделяют, например отсей-ванием на ситах, и анализируют отдельно. Содержание в суспензии частиц С размерами меньше 0,5 мк определяют суммарно без разделения на фракции. В связи с этим большое внимание было уделено разработке методов дисперсионного анализа, основанных На наблюдении за скоростью оседания частиц под действием центробежной силы с применением ультрацен-Трифуг различной конструкции. Сведбергом быЛи сконструированы ультрацентрифуги, дающие ускорения, равные 10 и большие ( —ускорение силы тяжести). Таким методом можно исследовать коллоидные системы высокой степени дисперсности (например, с радиусом частиц до 2 ммк). Современные ультра- [c.8]

    Для того чтобы ускорить оседание частиц, А. В. Думанский предложил использовать быстровращающиеся центрифуги с целью замены сил земного тяготения центробежной силой. Впоследствии Т. Сведберг создал ультрацентрифугу, в которой центробежная сила превышала силу земного тяготения в 900 ООО раз. Как следует из (XIII.2.1) и (ХП1.2.2), в этом случае величина Ай уменьшится во столько же раз, и все коллоидные частицы расположатся в непосредственной близости от дна сосу- [c.403]

    Заметное оседание частиц в системе, обладающей высокой кинетической устойчивостью, можно вызвать, если использовать значительные по величине центробежные силы. Впервые это сделал А, В, Думанский (1913), применивший центрифугу для осаждения коллоидных частиц. В 1923 г. Т. Сведберг разработал специальную центрифугу с большим числом оборотов, называемую ультрацентрифугой (рис. 111). Для центрифугирования требуются приборы, которые позволяют работать при точно известных скоростях с малыми отклонениями без температурных колебаний. Современные ультрацентрифуги работают при больших ускорениях до 420 ООО zh lOOg с контролем температуры в пределах десятой градуса. Существует два типа приборов — аналитические и препаративные. Аналитические центрифуги снабже- [c.306]

    Заметное оседание частиц может происходить даже в системах с высокой кинетической устойчивостью, если силу тяжести заменить более значительной центробежной силой. Эта идея была впервые высказана А. В. Думанским в 1913 г., применившим центрифугу для оседания коллоидных частиц, и затем особенно развита Т. Сведбергом, разработавшим так называемые ультрацентрифуги, дающие большую центробежную силу. В современной ультрацентрифуге можно осуществить седиментацию не только мельчайших гидрофобных коллоидов, но и молекул бе./щови вь1сокомолеку-лярных веществ. [c.313]

    Подобные исследования проводят в центрифугах с очень большой скоростью вращения, так называемых ультрацентрифугах. Этот метод, предложенный Думанским (1912 г.), был далее усовершенствован Сведбергом. В современных центрифугах частота вращения доходит до нескольких тысяч в 1 с, а центробежное ускорение — до миллионов g. Исследуемый раствор помещают в радиально расположенные кварцевые кюветы. В корпусе центрифуги имеются (наверху и внизу) кварцевые окошки. Через них и вращающиеся кюветы пропускают пучок Света на фотопластинку по интенсивности почернения (снимая в контрольном опыте кривую зависимости почернения от концентрации) находят с = /(р) и по уравнению (1П. 17) вычисляют молекулярную массу М . В другом варианте метода, более современном, измеряют изменение показателя преломления, также пропорционального концентрации, вдоль вращающейся кюветы ( шлирен-метод ). Этот метод является одним из основных для определения молекулярной массы макромолекул. [c.37]

    Подобные исследования проводят в центрифугах с очень большой скоростью вращения, так называемых ультрацентрифугах. Этот метод, предложенный Думанским (1912г.), был далее усовершеиствован Сведбергом. В современных центрифугах частота вращения доходит до нескольких тысяч в 1 с, а центробежное ускорение —до миллионов g. Исследуемый раствор помещают в радиально расположенные кварцевые кюветы. В корпусе центрифуги имеются (наверху и внизу) квар-цевыё окошки. Через них и вращающиеся кюветы пропускают пучок света на фотопластинку по интенсивности почернения [c.40]

    В эти годы созданы новые физ.-хим. методы аиализа. Были заложены основы хроматографич. методов (М. С. Цвет, 1906). В 20-х гг. Т. Сведберг предложил использовать для седиментации белков ультрацентрифугу, вскоре этим методом был выделен ряд вирусов. В 30-х гг. А. Тизе-лиусом заложены основы электрофореза, в 1944 А. Мартином и др. создана распределит, хроматография, для определения структуры прир. соед. впервые стал использоваться рентгеноструктурный анализ (Д. Кроуфут-Ходжкин, 40-е гг.). Благодаря использованию физ.-хим. методов в 50-х гг. достигнуты крупные успехи в изучении двух важнейших классов биополимеров-белков и нуклеиновых к-т Э. Чар-гафф провел детальный хим. анализ нуклеиновых к-т, открыта двойная спираль ДНК (Дж. Уотсон и Ф. Крик, 1953), определена структура инсулина (Ф. Сенгер, 1953), одновременно осуществлен синтез пептидных гормонов -окситоцина и вазопрессина (Дю Виньо, 1953), открыт один из элементов пространственной структуры белков- спираль (Л. Полинг, 1951). В эти годы Р. Замечником открыты рибосомы, что послужило стимулом для изучения механизма синтеза белка. [c.292]

    Т. наз. аналит. ультрацентрифугарование применяется при анализе р-ров, дисперсий и производится посредством аналит. ультрацентрифуг, снабженных роторами с оптически прозрачными замкнутыми резервуарами и оптич. системами для определения концентрации или ее фадиента по радиусу ротора во времени исследуемые объемы - от 0,01 до 2 мл при массе частиц от неск. мкг до мг. Препаративное ультрацентрифугарование используют для вьщеления компонентов из сложных смесей объем жидкости и масса исследуемого образца м.б. на неск, порядков больше, чем при аналит. ультрацентрифугаровании. Центробежные ускорения в ультрацентрифугах достигают 5 10 . Первая аналит. ультрацентрифуга бьша создана Т. Сведбергом (1923 5-10 ). [c.343]

    Наилучшим абсолютным методом измерения м. в. и молекулярно-весовых распределений, особенно широко применяемым в биофизике, биохимии и молекулярной биологии, является се-диментационный. Метод состоит в осаждении макромолекул под действием центробежной силы в ультрацентрифуге, вращающейся со скоростью порядка 10 —10 об мин. Центр обежное ускорение при этом во много раз превышает ускорение силы тяжести g. В современных ультрацентрифугах оно доходит до 350 ООО g (число оборотов в минуту 70 ООО). Кювета с раствором полимера помещается в ротор центрифуги. Кювета представляет собой цилиндр с прозрачными окнами из кристаллического кварца. Через кювету проходит пучок света, и наблюдение за седиментацией производится оптичес1шт методами. Впервые седиментация в ультрацентрифуге была применена к изучению полимеров Сведбергом в 1925 г. Подробное описание экспериментальных методов приведено в [48, 58]. [c.150]

    Теодор Сведберг (1884—197 ) окончил Упсальский университет, с которым была связана почти вся его дальнейшая деятельность. Он был ассистентом, доцентом и с 1921 г. профессором физической химии университета, В 1909 г. вместе с Д. Стремгольмом он высказал идею о существовании радиоактивных изотопов. В 20—30-х гг. он сконструировал ряд ультрацентрифуг и с их помощью вел определения молекулярных масс высокомолекулярных соединений. Т. Сведберг был иностранным членом Академии наук СССР (с 1966) и Нобелевским лауреатом. Ему принадлежат также исследования по радиоактивности и радиационной химии. [c.258]

    Ультрацентрифуга Сведберга в различных видоизменениях в рвастояшее время стала важнейшим прибором для определения молекулярных масс высокомолекулярных соединений. [c.259]

    Реальные успехй в выяснении строения белков и их синтез были достигнуты в послевоенные годы. Это было связано прежде всего с привлечением новых физико-химических методов, в частности ультрацентрифуги Т. Сведберга, для определения молекулярных масс и в особенности хроматографии. Именно хроматографически удалось выделить в чистом виде индивидуальные вещества из гидролизатов белков, что было невозможно с помощью прежних методов разделения. [c.262]

    Сведберг воспользовался центробежной силой в своем методе определения молекулярного веса коллоидных веществ с помопдью седиментации. Ультрацентрифуга состоит в основном из ротора М (рис. 2), приводимого в движение двумя одинаковыми масляными турбинами Т, несущими прозрачную ячейку С, в которую помещена изучаемая дисперсия. Степень седиментации может быть измерена как колориметрически, так и рефрактометрически или путем поглощения ультрафиолетовых лучей. В последнем случае пучок света Ь пропускается через ячейку в камеру Р необходимая экспозиция достигается с помощью электромагнетически регулируемых щитков и Е2, которые пропускают свет только в короткий промежуток времени, когда ячейка попадает в световой поток при каждом обороте турбинки. [c.117]


Смотреть страницы где упоминается термин Сведберга ультрацентрифуг: [c.514]    [c.334]    [c.156]    [c.181]    [c.11]    [c.12]    [c.689]    [c.192]    [c.136]   
Коллоидная химия (1959) -- [ c.42 , c.44 ]




ПОИСК





Смотрите так же термины и статьи:

Сведберг

Ультрацентрифуга



© 2024 chem21.info Реклама на сайте