Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Размеры коллоидных частиц определение

    Оптические свойства дисперсных систем используются на практике для изучения их структуры, определения размеров, формы частиц и их концентрации. Все эти определения основаны на соизмеримости электромагнитной световой волны-с Рис. 27. Эффект Тиндаля размерами КОЛЛОИДНЫХ частиц. Так [c.77]

    Одним из наиболее точных экспериментальных методов определения размеров коллоидных частиц является фотонная корреляционная спектроскопия [62 - 66]. Сущность метода заключается в определении коэффициента диффузии коллоидных частиц путем измерения спектрального состава рассеянного света. Результаты прямых измерений размеров асфальтеновых ассоциатов в модельных растворах углеводородов описаны в работе [64]. В качестве объектов исследования были выбраны первичные асфальтены, выделенные из гудрона смеси западно-сибирских нефтей и индивидуальные углеводороды толуол, циклогексан, н-пентан. Показано, что размеры асфальтеновых ассоциатов в зависимости от их концентрации в растворе (до 10% мае.) и растворителя варьируются от 2,0 до 13,5 нм. [c.84]


    ОПРЕДЕЛЕНИЕ РАЗМЕРА КОЛЛОИДНЫХ ЧАСТИЦ ТУРБИДИМЕТРИЧЕСКИМ МЕТОДОМ [c.31]

    Можно показать также, что этот закон справедлив и для не слишком мутных коллоидных растворов, в которых тиндале-во рассеяние света мало. Если при работе с такими растворами наблюдается отклонение от закона Ламберта — Бера, следует изменить число и размеры коллоидных частиц. Таким образом, закон Ламберта — Вера можно при определенных условиях применить для определения концентраций коллоидных растворов. [c.357]

    Определение размеров коллоидных частиц возможно с помощью центробежного поля, где ускорение может достигать 10 g и частицы коллоидных размеров оседают достаточно быстро. Впервые центрифуги для дисперсионного [c.104]

    Это соотношение позволяет использовать измерение интенсивности рассеянного света в двух целях для определения процентной концентрации исследуемого коллоида (если размеры частиЦ не изменяются и одинаковы с размером частиц стандартного золя) и для определения размеров частиц исследуемого коллоида (если процентная концентрация постоянна и равна концентрации стандартного золя). Из соотношения 1 = Кси видно, что, определив интенсивность рассеянного света, можно найти лишь одно из этих неизвестных — либо концентрацию коллоида, либо размеры коллоидных частиц. Для этого и пользуются нефелометрами. [c.39]

    Использовать ультрацентрифугу для определения размера коллоидных частиц впервые в 1910 г. предложил А. В. Думанский. Шведский ученый Сведберг широко использовал эту идею, он разработал ряд конструкций ультрацентрифуг для определения размера коллоидных частиц и молекул высокомолекулярных веществ, например белков. [c.77]

    Для определения размеров коллоидных частиц с помощью ультрамикроскопа необходимо провести подсчет частиц в известном объеме, т. е. определить частичную концентрацию золя. [c.36]

    Рассмотренный метод определения среднего размера коллоидных частиц был усовершенствован Дерягиным и Власенко [4], [5], [6], которые разработали метод поточной ультрамикроскопии и сконструировали на его принципе приборы — поточные ультрамикроскопы. [c.37]

    Идея этого метода заключается в подсчете частиц в непрерывном потоке золя, пересекающих за определенный промежуток времени освещенную зону в направлении луча зрения. Пользуясь этим методом, можно не только определить средний размер коллоидных частиц, но и провести дисперсионный анализ исследуемой системы, ведя подсчет частиц при постоянной скорости потока и постепенно уменьшающейся освещенности зоны подсчета. При каждой освещенности глаз способен регистрировать частицы с радиусом, большим определенной величины. Поэтому, меняя освещенность и подсчитывая число частиц при постоянной скорости потока, можно получить данные для построения интегральной кривой распределения частиц по размерам. [c.37]


    ОПРЕДЕЛЕНИЕ РАЗМЕРОВ КОЛЛОИДНЫХ ЧАСТИЦ ПО ЗАВИСИМОСТИ КОЭФФИЦИЕНТА экстинкции ОТ длины ВОЛНЫ СВЕТА [c.41]

    Назовите основные методы определения размеров коллоидных частиц, основанные на их молекулярно-кинетических свойствах. [c.387]

    Рассеяние света возможно, если размер коллоидных частиц меньше длины волны проходящего света и показатели преломления дисперсной фазы и дисперсионной среды различны. Интенсивность светорассеяния резко увеличивается с уменьшением длины световой волны. В рассеянном свете коллоидные растворы имеют синеватый оттенок, а в проходящем — красно-оранжевый. На явлении рассеяния света золями основаны методы определения их дисперсного состава. [c.155]

    ОПРЕДЕЛЕНИЕ РАЗМЕРОВ КОЛЛОИДНЫХ ЧАСТИЦ ПО ХАРАКТЕРИСТИЧЕСКОЙ [c.42]

    Определение -потенциала из измерений скорости электрофореза и электроосмоса дает надежные и сопоставимые результаты только тогда, когда размер коллоидных частиц значительно превосходит толщину двойного электрического слоя. В этом слу- [c.91]

    Минимальный размер коллоидных частиц определяется требованием к дисперсной системе быть гетерогенной, т. е. частицы дисперсной фазы должны иметь поверхность и находиться в определенном агрегатном состоянии. Такими свойствами не обладают отдельные атомы или молекулы. Только применительно к их достаточно большой совокупности (согласно молекулярно-кинетической теории их должно быть не менее 11 — 15) можно говорить о твердом теле, жидкости или газе, поскольку агрегатное состояние поверхности определяется подвижностью частиц и их взаимодействием. [c.256]

    Первоначально предполагали, что среда рассеивает свет вследствие того. Что в пей имеются частицы определенного размера (коллоидные частицы). Среды, лишенные таких частиц, называли [c.473]

    В исследованиях полимеров нашли применение некоторые методы определения молекулярной массы низкомолекулярных соединений в растворах, а также методы определения размеров коллоидных частиц. Кроме того, для определения молекулярной массы (или СП) полимеров разработаны специальные методы, основанные на особенностях полимеров. При определении молекулярной массы в растворах иногда дополнительно можно получить информацию о форме макромолекул и неоднородности полимера по молекулярной массе. [c.173]

    Одной из особенностей коллоидных растворов поверхностноактивных веществ является их способность к образованию мицелл. Молекулярный вес образующихся мицелл, так называемы мицел-лярный вес, составляет обычно несколько десятков тысяч. Значение средневесового мицеллярного веса ПАВ можно определить различными методами, которыми пользуются и для нахождения молекулярного веса полимеров. Сюда относятся методы, основанные на измерении светорассеяния растворами ПАВ и на определении диффузионной способности мицелл, а также метод седиментационпого анализа с помощью ультрацентрифуги. Наиболее эффективным и вместе с тем относительно простым методом оценки размеров коллоидных частиц в растворах является метод светорассеяния. С помощью этого метода определяют значение мицеллярного веса ПАВ в данной работе. Вывод теории светорассеяния применительно к разбавленным растворам ПАВ, содержащим мицеллы, размер которых не превышает /20 длины волны видимого света, может быть записан в следующей форме  [c.122]

    Прозрачные растворы кремнезема могут содержать поликремневые кислоты или небольшого размера коллоидные частицы, которые с молибденовой кислотой не будут полностью реагировать. Таким образом, перед определением суммарного содержания кремнезема необходимо провести процесс деполимеризации, с тем чтобы превратить весь кремнезем в мономер. [c.142]

    Пользуясь набором ультрафильтров с разными размерами пор, можно не только отделять от жидкости коллоидные частицы определенной величины, но и осуществлять дробное разделение коллоидов, если только частицы каждого из разделяемых коллоидов имеют примерно одинаковые размеры. Кроме того, применение набора ультрафильтров с различной величиной пор может быть использовано и для другой цели, а именно, для определения величины частиц какого-либо коллоидного вещества. Зная средние размеры пор двух ультрафильтров, один из которых задерживает частицы данного вещества, а другой пропускает их, можно иметь приблизительное суждение о средней величине этих частиц. [c.79]

    Седиментационный метод с применением ультрацентри-фуги описан ранее (стр. 28—29) при рассмотрении методов определения размера коллоидных частиц. Определение молекулярного веса этим методом сводится а) либо к исследованию распределения концентрации раствора после установления седиментационного равновесия, для чего скорость вращения центрифуги устанавливают такую, чтобы развиваемая ею центробежная сила превышала силу тяжести примерно в 10 —10 раз б) либо к исследованию скорости седиментации, для чего центробежная сила должна превышать силу тяжести в 10 —10 раз. Изменение концентрации в установившемся равновесии определяют фотографически или по изменению показателя преломления. Расчет М производят по особым уравнениям, на которых мы не останавливаемся. Заметим лишь, что этот метод является наиболее всесторонним, так как, помимо УИ, дает возможность определять также и степень полидисперсности исследуемого вещества и судить о форме макромолекул. Метод нашел широкое применение при исследовании белков, полистирола, целлюлозы и других веществ. [c.163]


    В зависимости от природы растворителя, температуры и концентрации асфальтенов в растворе можно получить истинные или коллоидные их растворы и соответственно истинные молекулярные веса последних или же массовые числа, характеризующие размеры коллоидных частиц или ассоциатов. Если криоскониче-ское определение молекулярных весов асфальтенов производить в условиях, обеспечивающих получение истинных, т. е. молеку- [c.81]

    Еще Грэм показал, что коллоидные частицы диффундируют намного медленнее, чем молекулы в истинных растворах. Позже было показано, что эта характерная особенность лиозолей обусловлена большими размерами коллоидных частиц по сравнению с размером обычных молекул. Поэтому определение коэффициентов диффузии лиозолей стало одним из основных методов коллоидной химии при определении размеров частиц дисперсной фазы. [c.38]

    Малое значение и непостоянство осмотического давления лиозолей являются причиной того, что осмометрия, а также эбулио-скопия и криоскопия не применяются для определения численной концентрации или размера коллоидных частиц. Следует, впрочем, заметить, что осмометрические, эбулиоскопические и криоскопиче-ские методы нельзя использовать для определения размера коллоидных частиц не только вследствие указанных причин, но и из-за обычного присутствия в лиозолях электролитов. При очистке лиозолей, например диализом, вместе с посторонними электролитами может удаляться и стабилизующий электролит, что приводит к нарушению агрегативной устойчивости системы, укрупнению частиц и, следовательно, к получению неправильных значений осмотического давления. Кроме того, на результатах осмометрических определений сильно сказывается так называемое мембранное равновесие ), или равновесие Доннана. Это равновесие устанавливается в результате сложного распределения ионов между коллоидным раствором в осмотической ячейке и внешним раствором, о чем подробно сказано в гл. XIV. [c.68]

    БРОУНОВСКОЕ ДВИЖЕНИЕ - беспорядочное, непрерывное движение взвешенных в жидкости или газе маленьки.х частиц (до 5 мк), вызываемое тепловым движением молекул окружающей среды. Зпервые описано Р. Броуном в 1827 г. Интенсивность Б. д. зависит от температуры, внутреннего трения (вязкости) среды и размеров частиц движение усиливается при повышении температуры и уменьшении размера частиц и уменьшается при увеличении вязкости. В 1905—1906 гг. А. Эйнштейн и М. Смо-луховский дали полную количественную молекулярно-статистическую теорию Б. д. и вывели уравнение, по которому можно определить среднее значение квадрата смещения частицы в определенном, но произвольном направлении. Экспериментальная проверка этого уравнения, проведенная Ж- Перреном, Т. Сведбер-гом и др., полностью подтвердила его справедливость, утвердив тем самым общность молекулярно-статистических представлений. Измерения броуновских смещений позволяют судить о размерах коллоидных частиц, которые нельзя определить другими методами (напр., при помощи оптических микроскопов). [c.48]

    Поскольку линейные размеры коллоидных частиц обычно на 2—3 порядка больше линейных размеров молекул, то при одинаковых весовых концентрациях количество частиц в единице объема коллоидных растворов будет на 6—9 порядков меньше, чем в истинных растворах соответственно во столько же раз будет меньше осмотическое давление. Поэтому определение осмотического давления и зависящих от него эффектов — понижения температуры кристаллизации ЛТзатв и повышения температуры кипения АГкип — связано со значительными экспериментальными трудностями. Достаточно сказать, что осмотическое давление золя золота при концентрации 1 мг/л, Т = 273 К и линейной величине частиц 25 нм равно 3,63 10""Н/м . Определение столь малых величин осмотического давления и изменения температур кристаллизации и кипения осложняется и тем, что уже небольшое количество примесей электролитов будет вносить существенные ошибки при измерении. [c.405]

    Определение размеров коллоидных частиц может быть осуществлено различными путями. Одним из них является непосредственный подсчет их среднего числа в определенном очень маленьком объеме коллоидного раствора при помощи специально приспособленного ультрамикроскопа. Зная одновременно общую концентрацию распределенного вещества, легко вычйслить средний размер коллоидных частиц. Иногда степень дисперсности можно грубо оценить по окраске золя в проходящем свете. Например, высокодисперсные золи металлического золота имеют красивый красный цвет, низкодисперсные — фиолетовый. При увеличении размеров коллоидных частиц возрастает и опалесценция золей, чем также можно пользоваться для грубой оценки степени дисперсности  [c.613]

    Поскольку размеры коллоидных частиц во много раз больше размеров молекул, то при одной и той же массе содержащегося в растворе вещества число частиц в единице объема коллоидного раствора в десятки и сотни тысяч раз меньше, чем число молекул в единице объема истинного раствора. По этой причине величина осмотического давления в коллоидных растворах ничтожно мала и с трудом поддается измерению. Результаты опытного определения осмотического давления коллоидных растворов часто сильно искажаются вследствие присутствия в них даже ничтожных примесей (следов) электролитов и растворимых низкомолекуляриых веществ. Получить же устойчивые золи без таких примесей не представляется возможным. Поэтому метод осмометрии для исследования коллоидных растворов применяется редко. Однако он с успехом применяется для растворов ВМС. [c.341]

    В России основоположником коллоидной химии был киевский профессор И. Борщов, в классической работе которого О свойствах и строении коллоидов, участвующих в образовании растительных и животных организмов (1869) четко сформулированы положения о сложности состава коллоидных частиц и значении связанной ими воды для сцепления частиц. Позднее важные работы провели И. Громека (1879, развитие теории капиллярности), Н. Любавин и А. Сабанеев (1890, криоскопические определения размеров коллоидных частиц), Ф. Шведов (1889, [c.8]

    Если в электронном микроскопе используется поглощение электронов для изучения внешней формы и размеров коллоидных частиц и макромолекул, то методы рентгенографии и электронографии при исследовании внутренней структуры коллоидных частиц и полимерных материалов основаны на диффракции рентгеновых лучей, или, соответственно, электронов. При регулярном расположении атомов, например в кристалле, интерференция рассеянных волн приводит к определенной системе диффракционных пятен. Положение пятен определяется законом Вульфа-Брэгга  [c.70]

    Применяя для ультрафильтров мембраны с определенной пористостью, можно в известной мере разделить по размерам коллоидные частицы и одновременно приближенно определить их размеры. Этим спосюбом были опре-делёны размеры частиц ряда вирусов и бактериофагов. [c.86]

    Метод ультрацентрифугирования (седиментации в ультрацентрифуге). Этот метод первоначально был разработан для определения размеров коллоидных частиц, а затем усовершенствован для измерения молекулярной массы полимеров. В настоящее время он является наиболее точным и теоретически обоснованньпк , однако сложен в аппаратурном оформлении. В ультрацентрифуге при больших частотах вращения создается сильное центробежное поле, под воздействием которого происходит седиментация (осаждение) макромолекул в растворе. Метод дает возможность определять молекулярные массы в очень широком интервале от 50 до 50-10  [c.176]

    Электронная микроскопия. Электронный микроскоп дает возможность прямым методом определять размеры коллоидных частиц (рис. 4.7). При применении усовершенствованных моделей приборов можно различать отдельные частицы вплоть до таких, размеры которых составляют всего лишь 1—2 нм. Однако измерение частпц величиной меньше 5 нм оказывается затруднительным. Александер и Айлер [142] впервые продемон-стрпровали, что размеры коллоидных частиц кремнезема, измеренные с помощью электронного микроскопа, коррелируют с соответствующими размерами, определенными методом рас- [c.469]

    Первоначально предполагали, что среда рассеивает свет вследствие того. Что в пей имеются частицы определенного размера (коллоидные частицы), Среды, лишенные таких частиц, называли оптически пустыми. В настоящее время хорошо известно, что оптически пустых срсд не существует, Любая самая чистая жидкость (и даже газы) способна расссивагь свет. Светорассеяние обуслоолено флюктуациями плотностей и концентраций (если это раствор), т- е. отклонением плотности и концентрации от равномерного значения. Образующиеся рои, или ассоциаты, служат центрами рассеяния света. [c.473]

    Пересыщение раствора неустойчиво. При увеличении пересыщения раствора сверх некоторого предела наступает самопроизвольная кристаллизация. Это происходит потому, что с увеличением пересыщения резко возрастает степень ассоциации частичек растворенного вещества и образуются квазикристаллы определенных размеров. Такие квазикристаллы, хотя и могут достигать размеров коллоидных частиц, существуют кратковременно, распадаясь под воздействием тепловых движений в одних местах и одновременно возникая в других точках раствора. Когда степень пересыы1ения раствора достигает больших значений, находящиеся в нем квазикристаллы, выросшие до некоторого предельного размера, начинают выполнять функции зародышей кристаллизации. [c.360]


Смотреть страницы где упоминается термин Размеры коллоидных частиц определение: [c.107]    [c.400]    [c.95]    [c.17]    [c.39]    [c.99]    [c.585]    [c.473]   
Физико-химия коллоидов (1948) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Коллоидные определение

Коллоидные частицы

Коллоидные частицы размеры

Частицы размер

Частицы размер см Размер частиц

Частицы размер, определение



© 2025 chem21.info Реклама на сайте