Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Турбокомпрессоры также Центробежные компрессоры

    На нефтеперерабатывающих и нефтехимических заводах для перемещения жидкостей и компримирования газов применяют как центробежные машины, так и поршневые насосы и компрессоры. К центробежным машинам относятся турбокомпрессоры, центробежные насосы, турбовоздуходувки, турбогазодувки, газовые и паровые турбины. Большая часть насосов используется для перекачки пожаровзрывоопасных, едких и токсичных жидкостей в широком интервале производительности, напора и температур. Поршневые и центробежные компрессоры также работают на взрывоопасных и токсичных газах. Поэтому при ремонте насосно-компрессорного оборудования очень важное значение приобретают требования, предъявляемые к качеству ремонта и сборки как отдельных деталей и узлов, так и всей, машины, поскольку неисправности в насосах, компрессорах и их узлах приводят к нарушению технологического режима, авариям и несчастным случаям. [c.225]


    Центробежные компрессоры (турбокомпрессоры) и газодувки (турбогазодувки) сходны по конструкции, следовательно, технология их монтажа и ремонта примерно одинакова. В состав агрегата турбокомпрессора входит редуктор, который также периодически подвергают ревизии и ремонту. [c.269]

    Непременным условием нормальной работы центробежного компрессора является его правильная центровка, т. е. правильное взаимное расположение осей валов ротора, редуктора, электродвигателя, а также плоскостей различных деталей относительно друг Друга и по отношению к горизонту. Допускаемая несоосность и перекос турбокомпрессора, редуктора и электродвигателя не должна превышать 0,05 мм. [c.206]

    Газотурбинный агрегат состоит из осевого турбокомпрессора, газовой турбины, редуктора для изменения числа оборотов, центробежного компрессора, выполняющего роль второй ступени сжатия воздуха, мотора-генератора. Мотор-генератор используется при пуске агрегата и камеры сжигания газа, работающей также при пуске агрегата. Во время нормальной работы агрегата мотор-генератор служит для выдачи избытка энергии, вырабатываемой агрегатом, во внешнюю сеть. Для охлаждения воздуха после первой ступени сжатия имеется промежуточный холодильник. [c.60]

    Сложное технологичбокое оборудование (колонны синтеза, конверторы, поршневые компрессоры высокого давления, центробежные нагнетатели, турбокомпрессоры и т. д.) повышает взрыво- и пожароопасность производства аммиака. Большую опасность для пожаров и взрывов представляют также хранилища газовых смесей— газгольдеры. [c.28]

    Характеристики осевых компрессоров, полученные в результате испытаний, отличаются от характеристик турбокомпрессоров. Кривая р—V обычно имеет крутую форму падения. Кривая мощности также довольно круто падает с увеличением подачи, а кривая КПД имеет более резко выраженный максимум. Сопоставление характеристик осевых и центробежных компрессоров показывает, что в осевых компрессорах с изменением подачи резче меняется КПД и степень сжатия. Диапазоны устойчивых режимов у осевых компрессоров меньше, однако в расчетных режимах осевые компрессоры позволяют получить большие КПД, чем центробежные. Для их иллюстрации на рис. 4.36 показана зависимость адиабатического КПД от подачи неохлаждаемых многоступенчатых центробежных 1 и осевых 2 компрессоров. [c.193]


    В центробежных, винтовых и некоторых типах ротационных компрессоров смазываются только выносные подшипники. Эта особенность имеет большое значение при компримировании газов, загрязнение которых маслом нежелательно. В турбокомпрессорах масло также подается в напорные бачки для уплотнения сальников при остановке машины. [c.23]

    Ротационные и винтовые компрессоры, обладая достоинствами центробежных, имеют более высокий к. п. д., чем турбокомпрессоры, и применяются при производительностях обычно не более 6000 мУч и давлениях не выше 15 ат (двухступенчатые пластинчатые ротационные компрессоры). Недостатками ротационных компрессоров являются сложность изготовления и обслуживания, а также высокий износ пластин [c.174]

    В свете этих решений перед азотной промышленностью, вырабатывающей эффективные виды удобрений, поставлены весьма важные и серьезные задачи. Для их выполнения необходимо строительство новых предприятий, расширение и реконструкция на основе прогрессивной технологии действующих заводов, оснащение их высокопроизводительным мощным оборудованием. В связи с этим в производстве аммиака разрабатываются и внедряются новые методы конверсии природного газа с применением повышенного давления создаются более активные катализаторы, работающие при сравнительно низких температурах и обеспечивающие более высокую степень превращения исходных веществ в получаемые продукты применяются более эффективные абсорбенты для удаления из газов двуокиси углерода глубоко используется тепло химических процессов (включая синтез аммиака) для получения водяного пара высокого давления (до 140 ат), перегреваемого до высоких температур (570 °С) в крупных агрегатах синтеза аммиака мощностью 1000—1500 т сутки и более. Энергию получаемого таким путем водяного пара высоких параметров можно использовать в паровых турбинах для привода основных машин аммиачного производства, в частности турбокомпрессоров высокого давления для сжатия азото-водородной смеси до давления процесса синтеза аммиака, воздушных турбокомпрессоров, турбокомпрессоров аммиачно-холодильной установки, центробежных циркуляционный компрессоров совместно с турбокомпрессорами высокого давления. Энергия пара рекуперируется также в турбогенераторе для выработки электроэнергии, потребляемой на приводе насосов. В пу)овых турбинах высокое давление части полученного пара понижается до давления, близкого к давлению процессов конверсии метана и окиси углерода, что позволяет использовать в этих процессах собственный технологический пар. [c.10]

    Существенным преимуществом центробежных машин является равномерное всасывание и нагнетание газа, а также отсутствие смазки, вызывающей загрязнение сжимаемого газа маслом. Кроме того, компактность и отсутствие больших движущихся масс со значительными инерционными силами резко снижают расходы, связанные со строительством зданий и фундаментов под компрессоры. Кпд у турбокомпрессоров меньше, чем у поршневых, из-за больших внутренних потерь. [c.426]

    Установка центробежного компрессора. Центробежный ком- прессор вместе с редуктором (ускорителем) и электродвига,телем, которые входят в комплект турбокомпрессОрного агрегата, монтируют следующим образом на железобетонной плите, уложенной на плотный грунт, устанавливаются колонны, связанные наверху в плоскости пола компрессорного зала железобетонными балками. Последние имеют отверстия для анкерных болтов, крепящих раму турбокомпрессора, а также необходимые проемы и углубления для труб, прокладки кабеля и т. д. На балки кладутся фундаментные плиты компрессора, редуктора и электродвигателя. Рамный фундамент способствует более свободному размещению турбоагрегата, трубопроводов и прочего вспомогательного оборудования. -Кроме того, он облегчает не только монтаж, но и осмотр и ремонт оборудования в процессе эксплуатации. [c.488]

    Для сжатия газов я их смесей используют компрессоры. По принципу действия компрессоры делятся на поршневые, ротационные, центробежные и осевые. В поршневых компрессорах газ сжимается в замкнутом объеме цилиндра посредством возвратно-поступательного движения поршня в ротационных — за счет вращательного движения поршня (ротора). В центробежных и осевых компрессорах давление газа повышается под действием центробежных сил, возникающих при вращении рабочих колес. Применение компрессоров той или иной конструкции определяется в основном производительностью и давлением, но при этом учитываются надежность и простота эксплуатации, а также необходимые энергетические затраты на сжатие. В нефтеперерабатывающей и нефтехимической промышленности широко распространены поршневые и центробежные турбокомпрессоры. Ротационные компрессоры имеют к. п. д. 0,8—0,9, но отличаются сложностью конструкции и обслуживания. [c.28]

    Ротационные и винтовые компрессоры, обладая достоинствами центробежных, имеют более высокий к. п. д., чем турбокомпрессоры, и применяются при производительностях обычно не более 6000 м /ч и давлениях не выше 15 ат (двухступенчатые пластинчатые ротационные компрессоры). Недостатками ротационных компрессоров являются сложность изготовления и обслуживания, а также высокий износ пластин ротора, из-за чего часто нарушается герметичность рабочих камер и происходит уменьшение степени сжатия. [c.182]


    Техническое обслуживание хлорных турбокомпрессоров ХТК-2,5/3,5 водородных компрессоров, центробежных насосов, центрифуг для соли, транспортирующих механизмов и другого оборудования состоит в смазке, обтирке, чистке, регулярном осмотре и выявлении наружных дефектов, проверке состояния масляных и охлаждающих систем подшипников, а также в наблюдении за работой контрольно-измерительных и автоматических приборов, за наличием и исправностью ограждающих устройств и изоляции. [c.198]

    При подаче газа на расстояние в несколько километров сопротивление газопровода становится настолько значительным что приходится подавать газ под некоторым давлением, создаваемым на газоповысительных или бустерных станциях с помощью турбогазодувок или турбокомпрессоров. На сажевых заводах применяют центробежные или ротационные турбогазодувки (давление до 3 кгс см -), а также центробежные и порщ-невые компрессоры (давление до 8 кгс см ). [c.57]

    Эперготехнологические агрегаты по производству аммиака разработаны с максимальным применением воздушного охлаждения. В результате использования тепла реакций и воздушного охлаждения потребление оборотной воды снизилось в два раза. Технологическая схема агрегата характеризуется глубокой рекуперацией тепла экзотермических стадий процесса. Низкопотенциальное тепло конвертированной паро-газовой смеси, отпарного газа разгонки конденсата использовано для получения холода на различных уровнях, а также для подогрева питательной воды котлов. Высоконотенциальное тепло технологического газа, дымовых газов трубчатой печи использовано для получения пара, необходимого для паровой турбины турбокомпрессора азото-водородной смеси. Пар применяется для технологических целей, приводов компрессоров природного газа и воздуха, дымососов и ряда центробежных насосов. Технологический процесс значительно автоматизирован с помощью электронных приборов и ЭВМ. Создание таких агрегатов явилось результатом прогресса науки, творческой инженерной мысли и достигкений машиностроения и материаловедения. [c.31]

    Схема применения компрессора в установке Т е р м о ф о р подобна приведенной на рис. 9. Так же предусматривается работа двух центробежных коишрессоров, приводимых двумя газовыми турбинами один турбокомпрессор одноступенчатый, а другой — двухступенчатый. Одноступенчатый компрессор подает сжатый воздух в регенератор, а двухступенчатый сжимает крекинг-газы, поступающие из фракционной колонны. В этой установке отходящие газы газовых турбин также используются для получения насыщенного пара в котле-утили-заторе. [c.24]

    Бустерные станции металлургических заводов, повышающие давление газа до 500—2000 тм H,0, также оборудуются центробежными газодув-ками, работающими по принципу турбоэксгаустера. В том случае, когда требуются более значительные степени сжатия, применяются турбокомпрессоры (до давлений в 8—10 ат) и поршневые компрессоры обычно с двумя ступенями сжатия. [c.359]


Смотреть страницы где упоминается термин Турбокомпрессоры также Центробежные компрессоры : [c.59]    [c.145]    [c.330]    [c.199]   
Компрессорные установки в химической промышленности (1977) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте