Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Абсорбционно-отпарные колонны газов

    АБСОРБЦИОННО-ОТПАРНАЯ КОЛОННА ДЛЯ РАЗДЕЛЕНИЯ УГЛЕВОДОРОДНЫХ ГАЗОВ [c.84]

    Ниже приведены методика и рекомендации по расчету абсорбционно-де-сорбционной (абсорбционно-отпарной) колонны для разделения углеводородных газов методика и рекомендации по расчету холодильника абсорбента установки низкотемпературной абсорбции. [c.84]

    По описанной схеме удается извлечь только около 50% имеющегося в исходном газе пропана. Для повышения степени извлечения сжиженных газов применяют абсорбционно-отпарную колонну (фракционирующий абсорбер), состоящую из двух секций разных диаметров. Верхняя секция меньшего диаметра служит абсорбером, сверху нее подается свежий абсорбент, а снизу поступает газ. В нижнюю секцию подводится тепло, в результате чего происходит выделение поглощенного абсорбентом метана, этана и пропана. Последний вновь поглощается свежим абсорбентом в верхней секции фракционирующего абсорбера. Таким образом сверху аппарата уходит сухой газ (метан и этан), а снизу насыщенный абсорбент. Применение абсорбционного метода позволяет извлечь из исходного сырья 70— 90% пропана, 97—98% бутана, весь пентан и более тяжелые компоненты. [c.166]


    Технологическая схема абсорбционного разделения попутного газа с применением таких абсорбционно-отпарных колонн изображена на рис. 2. Исходный газ сжимают трехступенчатым компрессором / до 1,2—2 МПа в зависимости от содержания высших углеводородов. Затем он поступает в среднюю часть абсорбционно-от-парной колонны 2, орошаемой предварительно охлажденным абсорбентом (им обычно служат более тяжелые фракции бензина или лигроин). Верхняя часть колонны работает как абсорбер, причем из газа поглощаются полностью углеводороды С5 и высшие, около 95% бутанов и 70—80% пропана. Непоглощенные газы, состоящие в основном из метана и этана, можно использовать в качестве топливного газа или выделять из них метан, этан и пропан одним из рассмотренных выше методов. Процесс абсорбции [c.26]

    Как видно из приведенных данных, основные потери углеводородов Сз имеют место с сухим газом абсорбционно-отпарной колонны. Одновременно и стабилизатор не обеспечивает четкого раз- [c.273]

    Сухой газ нз абсорбционно-отпарной колонны...... [c.273]

    Абсорбционно-отпарная колонна для разделения углеводородных газов. ............ [c.3]

Рис. 5.5. Абсорбционная установка с абсорбционно-отпарной колонной 1-холодильники-конденсаторы 2-сепараторы 3-абсорбер 4-аб-сорбционно-отпарная колонна 5-теплообменники б-десорбер 7-насосы 8-трубчатая печь 9-емкости 1-сырой газ П-отбензиненный газ III-остаточный газ IV-несконденсировавшийся газ V-нестабильный бензин VI-углеводородный конденсат VII-насыщенный абсорбент VIII-тощий абсорбент 1Х-деэтанизированный конденсат Рис. 5.5. <a href="/info/29937">Абсорбционная установка</a> с абсорбционно-отпарной колонной 1-<a href="/info/490860">холодильники-конденсаторы</a> 2-сепараторы 3-абсорбер 4-аб-сорбционно-<a href="/info/28249">отпарная колонна</a> 5-теплообменники б-десорбер 7-насосы 8-<a href="/info/26508">трубчатая печь</a> 9-емкости 1-сырой газ П-<a href="/info/83628">отбензиненный</a> газ III-остаточный газ IV-несконденсировавшийся газ V-<a href="/info/310201">нестабильный бензин</a> VI-<a href="/info/382358">углеводородный конденсат</a> VII-<a href="/info/68899">насыщенный абсорбент</a> VIII-<a href="/info/68899">тощий абсорбент</a> 1Х-деэтанизированный конденсат
    В переработке природных газов этот процесс получил наибольшее развитие в 50-е годы. Классическая схема масляной абсорбции включает абсорбер, абсорбционно-отпарную колонну (ЛОК), десорбер (рис. 52). [c.159]

    Смесь альдегидов нагревается до 50° С в подогревателе и поступает в колонну, где в качестве верхнего продукта выделяется основное количество растворенных углеводородов и некоторое количество альдегидов. Верхний продукт поступает сначала в конденсатор, затем в сепаратор, где отделяется около 40% увлеченных альдегидов. Газ, содержащий остальное количество увлеченных альдегидов, поступает в абсорбционно-отпарную колонну, где улавливаются альдегиды. Абсорбентом в колонне 2 служат кубовые остатки, выделяемые в колонне 3. Стабильные продукты из колонны 1, сепаратора 1 и колонны 2 поступают в колонну 3 для отделения кубовых остатков — продуктов уплотнения, содержащих альдегиды Сд, ацетали, сложные эфиры и высококипящие углеводороды. Отпаренный альдегидный продукт конденсируется, охлаждается и отводится в промежуточную емкость. Часть альдегидного продукта подается на орошение колонны 3. Нижний продукт частично подается на орошение колонны 2, а избыточное его количество может быть переработано путем гидрирования. Из промежуточной емкости альдегиды вместе с водой, являющейся разделяющим агентом, подаются на колонну 4, где разделяются масляные альдегиды. Для разделения альдегидов могут использоваться или тарельчатые, или насадочные колонны. Сверху колонны отбирается изомасляный альдегид, который конденсируется, охлаждается и подается на дальнейшее использование (например, на гидрирование с целью получения изобутанола). Нижний продукт, содержащий н-масляный альдегид [c.129]


    Давление в абсорбционных аппаратах на отечественных установках НТА по разделению природных газов поддерживается до 5,5 МПа, при переработке нефтяных газов - до 4 МПа. Повышение давления в абсорбере приводит к увеличению извлечения легких компонентов газа, в результате чего возрастает нагрузка на верхнюю часть абсорбционно-отпарной колонны (АОК) и увеличиваются потери пропана и более тяжелых углеводородов сухим газом АОК. [c.139]

    Чтобы разгрузить десорбер от наиболее легких компонентов, используют комбинированный аппарат - фракционирующий абсорбер, или абсорбционно-отпарную колонну (АОК), нижняя часть которой работает как десорбер, обеспечивая удаление наиболее легких компонентов из основного потока абсорбента, а верхняя как абсорбер, обеспечивая улавливание из газа тяжелых компонентов, отпаренных в нижней части, АОК включается в технологическую схему между абсорбером и десорбером. [c.195]

    На Оренбургском ГПЗ тарелки конструкции ВНИИгаз используют в абсорбционно-отпарной колонне, предназначенной для деэтанизации широкой фракции углеводородов (диаметр аппарата 1,8/2 м, свободное сечение тарелок 2,5%, расстояние между тарелками 600 мм, плотность пара 9,4 кг/м ). Применение в этом аппарате клапанных тарелок привело бы к необходимости увеличения диаметра аппарата в 1,5—2 раза и, как следствие, к снижению рабочей скорости газа (пара), а также к сокращению интервала эффективной работы аппарата в 2—4 раза. Ректификационные колонны с такими тарелками работают на Казахском и Ухтинском газоперерабатывающих заводах. [c.395]

    I - абсорбер 2 - емкость предварительно насыщенного абсорбента 3 - холодильник (пропановый испаритель) 4 - абсорбционно-отпарная колонна (АОК) 5 - воздушный холодильник 6 — водяной холодильник 7 — емкость для орошения 8 - десорбер 9 — трубчатая печь 10 — теплообменник II — гидравлическая турбина 12 — сепаратор 13 — фазный разделитель. Потоки I - сырой газ II - исходный раствор гликоля III — сухой газ IV — топливный газ V - нестабильный бензин VI — на регенерацию [c.195]

    На отечественных ГПЗ давление в абсорбционных аппаратах установок НТА составляет обычно при переработке нефтяных (попутных) газов не более 4 МПа, при переработке природных газов — до 5,5 МПа. При выборе рабочего давления в абсорбционных системах ГПЗ принимают во внимание давление поступающего на завод газа, рабочее давление, при котором достигается оптимальное извлечение товарной продукции давление в магистральном газопроводе, предназначенном для транспортирования очищенного газа потребителям. В СССР начальное давление в магистральных газопроводах составляет 5,4 или 7,4 МПа. Поэтому в абсорбционных аппаратах установок НТА можно в принципе поддерживать примерно такое же давление, как в магистральном газопроводе. Однако повышение давления в аб- сорбере имеет свои недостатки, и в частности приводит к увеличению извлечения легких нежелательных углеводородов, в результате чего количество газа в абсорбционно-отпарной колонне возрастает, что может привести к увеличению потерь пропана и более тяжелых углеводородов с сухим газом АОК. [c.207]

    Первый вариант (рис. П1.52) — регенерированный абсорбент смешивается с сухим газом абсорбционно-отпарной колонны 4 и вместе с ним поступает в пропановый испаритель 5. В результате контакта этих потоков регенерированный абсорбент насыщается легкими углеводородами с одновременным съемом тепла абсорбции. После этого насыщенный (балластом) регенерированный абсорбент отделяется в сепараторе 6 от свободного газа и подается на верхнюю тарелку абсорбера и АОК. [c.212]

    Третий вариант (рис. II 1.54) — один поток регенерированного абсорбента насыщается легкими углеводородами за счет смешения с сухим газом абсорбера 3 и после охлаждения и пропановом испарителе 7 и отделения от газа в сепараторе S подается на верхнюю тарелку абсорбера 3. Другой поток регенерированного абсорбента насыщается легкими углеводородами в результате смешения с сухим газом абсорбционно-отпарной колонны 4 и после охлаждения в пропановом испарителе 5 и отделения от газа в сепараторе 6 подается на верхнюю тарелку абсорбционно-отпарной колонны 4. [c.213]

    При неудовлетворительной организации режима работы абсорбционно-отпарной колонны содержание целевых углеводородов (пропана и др.) в сухом газе АОК увеличивается, что приводит к уменьшению производства ШФУ, поскольку больше целевых углеводородов попадает в топливный сухой газ. [c.227]

    Регенерированный легкий абсорбент выводят с низа десорбера 18, часть этого абсорбента нагревают в печи 19 и возвращают в низ десорбера, а соответствующее балансовое количество направляют после рекуперативных теплообменников 15, 14, 13, 2 м 8 в узел предварительного насыщения абсорбента легкими углеводородами. При этом для АОК абсорбент насыщают в одну степень в результате контакта с сухим газом абсорбционно-отпарной колонны, а для абсорбера з две ступени — в первой за счет контакта регенерированного абсорбента с сухим газом АОК (при давлении 3 МПа) и во второй ступени за счет контакта абсорбента [c.241]


    Ли пропановом испарителей от 37 до—23 С, в результате этого часть газа конденсируется. Для предотвращения гидратообразования при охлаждении газа в сырьевой поток перед теплообменниками 2 и 3 я пропановым испарителем 4 вводят раствор этиленгликоля. Из испарителя 4 смесь газа, обводненного этиленгликоля и сконденсировавшихся углеводородов (конденсата) поступает для разделения в сепаратор 5. После сепаратора обводненный этиленгликоль направляют на блок регенерации (на схеме не показан), конденсат — в абсорбционно-отпарную колонну 12 (после рекуперации холода в теплообменниках 3 и 16), а газ — в нижнюю часть абсорбера 8. На верхнюю тарелку абсорбера поступает регенерированный, предварительно насыщенный легкими углеводородами абсорбент, охлажденный до —23 °С. С верха абсорбера 8 получают сухой газ, который после узла предварительного насыщения (пропанового испарителя 7 и сепаратора 6) и рекуперации холода в теплообменнике 2 используют в качестве топлива. [c.244]

    С верха АОК получают сухой газ, который после узла предварительного насыщения (пропанового испарителя 10 и сепаратора 11) и рекуперации холода в теплообменнике 1 направляют потребителям. С низа абсорбционно-отпарной колонны 12 отводят деэтанизированный насыщенный абсорбент. Этот поток нагревают в рекуперативном теплообменнике 15 и подают в питательную секцию десорбера 21 (рабочее давление в аппарате 1,4 МПа). С верха десорбера выходит деэтанизированная широкая фракция углеводородов Сз+в сш а, которая после конденсации и охлаждения в воздушном холодильнике 18 поступает в рефлюксную емкость 19. Часть ШФУ используют для орошения десорбера, а избыток охлаждают в воздушном холодильнике 20 и откачивают [c.244]

    Алгоритм расчета схемы НТА основан на последовательном расчете отдельных аппаратов по специальным программным модулям [21 ]. Несмотря на сложность рекуперативного теплообмена и большое число рециркуляционных материальных потоков, расчет схемы (рис. IV.33) осуществлен без итераций. Это стало возможным в результате задания температуры однократной конденсации сырого газа и питания в абсорбционно-отпарной колонне (АОК). Для схем НТА возможно задание температуры ОК, так как более полно целевые компоненты извлекаются в основном в узле абсорбции. [c.318]

    Для обеспечения свободного перетока жидкости давление в абсорбционно-отпарной колонне задается более низким, чем в абсорбере. При этом происходит частичное дегазирование насыщенного абсорбента и в колонну входит смесь газов и жидкости. [c.134]

    Опыт первых лет работы Нижневартовского ГПЗ был проанализирован работниками института ВНИПИгазпереработка [35]. Согласно проектным данным, переработка газа по схеме НТА (рис. 10) заключается в следующем. От компрессоров нефтяной газ, сжатый до 3,87 МПа, поступает в сепаратор 1, где отделяется от конденсата. Затем газ охлаждается до минус 23°С (отходящими холодными технологическими потоками и в пропановом холодильнике 2). Для предупреждения гидратообразования и для сушки газа перед каждым холодильником инжектируется 70-процентный водный раствор этиленгликоля (ЭГ). Из холодильника 2 смесь газа, сконденсировавшихся углеводородов и этиленгликоля поступает в трехфазный разделитель 3. Откуда насыщенный раствор ЭГ подается на регенерацию по линии V, частично отбензиненный газ поступает в абсорбционную колонку 4. Углеводородный конденсат подвергают деэтанизации в абсорбционно-отпарной колонне [c.28]

    Часть потока поступает в узел предварительной абсорбции, где в поток по-,дается тощий абсорбент—стабильный конденсат. Смесь газа и абсорбента. проходит воздушный холодильник А01, охлаждается и поступает на 11-ю тарелку абсорбционно-отпарной колонны OI. [c.213]

    Насыщенное меркаптанами масло отводится с кубовой части абсорбера OI, объединяется с конденсатом из трехфазного сепаратора В02 и поступает в емкость дегазации В04, где происходит выделение легких углеводородов за счет понижения давления до 3 МПа. Газ дегазации поступает на вторую ступень компрессора, а частично дегазированный абсорбент подогревается в рекуперативном теплообменнике Е06 до 15 °С и направляется на 11-ю тарелку абсорбционно-отпарной колонны (АОК) С02, работающей в режиме деэтанизации. Давление в деэтанизаторе 1,3 МПа. Деэтанизатор состоит из 44 клапанных тарелок. На верхнюю тарелку подается регенерированное масло, охлажденное до минус 30 °С. Метан-этановая фракция с верха деэтанизатора поступает на первую ступень компрессора, после чего подается на вход емкости дегазации В04. Масло в нижней части деэтанизатора подогревается парами, поступающими из ребойлера Е11. Теплота подводится в ребойлер двумя теплоносителями паром низкого давления и дебутанизи-рованным маслом. [c.50]

    На рис, 313 представлена схема типовой установки стабилизации конденсата с ректификацией. Частично выветренный нестабильный конденсат, поступающий с установки НТС, дросселируется и поступает в сепаратор 1, Отсепарированная жидкость разделяется на два потока один направляется в рекуперативный теплообменник 2, нагревается и поступает в абсорбционно-отпарную колонну (АОК) 3 в качестве питания другой - без нагрева в качестве холодного орошения - поступает в верхную часть АОК, В АОК поддерживается давление 1,9-2,5 МПа, температура в верхней части 15-20 °С, в нижней -170-180 °С, Верхним продуктом АОК является фракция, состоящая, в основном, из метана и этана (III), кубовым продуктом -дезтанизированный конденсат. Обычно газ сепарации обьединяют с верхним продуктом АОК и после дожатия направляют в магистральный газопровод. Дезтанизированный конденсат из АОК направляется в стабилизатор 5, работающий по схеме полной ректификационной колонны. При этом из верхней части колонны отбирают пропан-бутановую фракцию (ПФБ) либо широкую фракцию легких углеводородов (ШФЛУ) IV, а из нижней части колонны отводят стабильный конденсат II. Давление в стабилизаторе составляет 1-1,6 МПа, В качестве кипятильников колонн используют огневые печи. [c.52]

    С верха абсорбера 1 отводят сухой газ, с низа — насыщенный абсорбент, который представляет собой смесь тощего абсорбента с извлеченными углеводородами. Сухой газ направляют потребителям, насыщенный абсорбент подают в питательную секцию абсорбцнонно-отпарной колонны 2 (узел деметанизации, деэтанизации). В абсорбционно-отпарной колонне (АОК) из насыщенного абсорбента удаляют легкие углеводороды (метан и этан). Для сокращения потерь пропана с сухим газом АОК и обеспечения наиболее полной деэтанизации насыщенного абсорбента на верхнюю тарелку абсорбционно-отпарной колонны подают регенерированный абсорбент, а в нижнюю кубовую часть АОК подводят тепло. С верха АОК выводят сухой газ (метан, этан и небольшое количество пропана), с низа — деэтанизированный насыщенный абсорбент. Сухой газ используют в качестве топлива, а деэтанизи- [c.203]

    Широкая фракция углеводородов Сз+высшие (ШФУ) конденсируется в воздущном (или водяном) холодильнике 7 н пЪступает в рефлюксную емкость 9, из которой часть ШФУ подают в качестве орощения на верхнюю тарелку десорбера 3, а избыток направляют на газофракционирующую установку для производства индивидуальных углеводородов или соответствующих фракций сжиженных газов. Тепло в нижнюю часть десорбера 3 подводят замечет циркуляции абсорбента, стекающего с нижней тарелки десорбера, через подогреватель 10. Регенерированный абсорбент выводят с низа десорбера 3, охлаждают в рекуперативных теплообменниках 4 и 5 и в холодильниках 6 и 8, после чего подают в абсорбер 1 и абсорбционно-отпарную колонну 2. [c.204]

    Одним из возможных способов повышения эффективности работы установок НТА является организация процесса абсорбции с подводом тепла в нижнюю часть абсорбционной колонны. В результате этого снижается нагрузка абсорбционно-отпарной колонны и сокращается количество низконапорного газа, получаемого при деэтанизации насыщенного абсорбента в АОК. При наличии в насыщенном абсорбенте большого количества метана и этана ухудшается работа АОК, увеличиваются потери пропана с сухим газом абсорбционно-отпарной колонны. Установлено, что при деметаниза-цин насыщенного абсорбента непосредственно в абсорбере деэтанизацию насыщенного абсорбента можно проводить по ректификационной схеме — применение ее позволяет сократить в ряде случаев затраты на регенерацию абсорбента на 18—40% [105]. [c.222]

    На рис. 111.64 приведены данные, характеризующие эффективность работы системы абсорбер — деметанизатор — абсорб-цнонно-отпарная колонна применительно к одному из газоперерабатывающих заводов при повышении температуры в нижней кубовой части абсорбера-деметанизатора с 23 до 130 °С. Анализ этих данных показал, что зависимость, отражающая связь между величиной суммарных потерь пропана в системе н температурой низа абсорбера-деметанизатора, имеет экстремальный характер с минимумом, проявляющимся при температуре около 100 °С. Экстремальный характер функций можно объяснить тем, что зависимость эта отражает действие двух противоположно направленных факторов, интенсивность которых определяется температурой низа абсорбера-деметанизатора (имеется в виду интенсивность роста потерь пропана с сухим газом абсорбера-деметани-затора и снижения потерь пропана с сухим газом АОК), Использование абсорбера-деметанизатора позволяет в данном случае сократить потери пропана на установке масляной абсорбции примерно на 30%, а также уменьшить в 2 раза нагрузку абсорбционно-отпарной колонны и в результате этого снизить теплоэнергС тические затраты на проведение процесса. [c.225]

    Отрицательное воздействие остаточных компонентов (Хо) можно уменьшить за счет более глубокого охлаждения регенерированного абсорбента перед подачей его в абсорбер и в абсорбционно-отпарную колонну. Такая схема используется на маслоабсорбционной установке Краснодарского нефте- и газоперерабатывающего завода, где в качестве абсорбента применяют разгазированный на промыслах газовый конденсат с высоким содержанием пропана и бутанов (на этом предприятии нет замкнутого контура абсорбер—десорбер ). Однако этот вариант является исключением в практике переработки газа. [c.233]

    Природный газ (давление 5,9 МПа) охлаждают в рекуперативном теплообменнике 1 и пропановом испарителе 3 от 18 до —37 °С, в результате чего часть газа конденсируется. Для предотвращения гидратообразования при охлаждении газа в сырьевой поток перед теплообменником 1 вводят раствор этнленгликоля. Из пропанового испарителя 3 смесь газа, обводненного этиленгликоля и сконденсировавщихся углеводородов (конденсата) поступает для разделения в сепаратор 6. После сепаратора обводненный этиленгликоль подают на блок регенерации (на схеме не показан), конденсат — в абсорбционно-отпарную колонну 12, а газ направляют — один поток в узел предварительного насыщения регенерированного абсорбента (пропановый испаритель 4 и сепаратор 5), другой поток — в нижнюю часть абсорбера 7. [c.240]

    С низа абсорбера 5 отводят насыщенный абсорбент один поток смешивают перед пропановым испарителем 4 с сырым газом (с целью предварительного отбензинивания газа), другой — после рекуперации холода в теплообменнике 8 поступает в испаритель-сепаратор 9, где насыщенный абсорбент частично разгазируется в результате дросселирования. Из испарителя-сепаратора газ и насыщенный абсорбент направляют в абсорбционно-отпарную колонну 11. Все другие элементы рассматриваемой схемы не отличаются от элементов предыдущего газоперерабатывающего завода. [c.243]

    Раечет процессов абсорбции и десорбции в абсорбциопно-отпарной колонне. Абсорбционно-отпарная колонна (АОК) предназначена для деметанизации и.т1и деэтанизации широких нефтяных фракций. Например, при деэтанизации насыщенного абсорбента в верхней части тккой колонны происходит главным образом абсорбция тяжелых компонентов из газа (Сз ), а в нижней части — в основном десорбция (отпарка) легких углеводородов (С —Сз). Работа олонны возможна с предварительным насыщением тощего абсорбента или без такового. В нервом случае условия" разделения в АОК приближаются к процессу ректификации, однако наличие высококипящих компонентов вверху колонны существенным образец влияет на режим и условия ее работы, поэтому расчет процесса разделения необходимо проводить по аналогии с расчетом процессов абсорбции и десорбции, а не ректификации. [c.149]

    Масляная абсорбция. Основана на поглощении углеводородов j и выше керосиновыми фракциями (мол. м. 180-240) при т-ре 10-30 °С и давл. 3,5-7,0 МПа. Метод обеспечивает извлечение 40-50% пропана, 85-90% бутанов и 95-100% газового беизина. Степень выделения целевых компонентов увеличивают, повышая уд. расход абсорбента. Сырой газ подают в ннж. часть абсорбера, регенериров. поглотитель - в верхнюю. Из верх, части аппарата отводят сухой газ, нз нижней - насыш. абсорбент. Последний направляют в абсорбционно-отпарную колонну, где из него удаляют метан и этан. После этого поглотитель поступает в десорбер (для извлечения из него углеводородов С, и выше) регенериров. абсорбент вновь направляют в верх, часть аппарата. [c.478]

    BOIA, ВОШ, B02.— сепараторы-разделители AOl, А02, АОЗ, А04 — воздушные холодильники Т-1005, Е04 —водяные холодильники Е01, ЕОЗ — испарители Е02 — рекуперативный теплообменник OI — абсорбционно-отпарная колонна 002 — дебутанизатор Р01, Р02, РОЗ —насосы I — сырьевой газ // —стабильный конденсат (абсорбент) /// —отбензн-ленный газ IV — абсорбент V—насыщенный абсорбент VI — ШФЛУ [c.212]

    К-1, К-2, К-4 — абсорберы К-3 — абсорбционно-отпарная колонна К-5 — десорбер B-U В-2дегазаторы С-1, С-2, С-З — сепараторы Х-1, Х-2, Х-3 — холодильники Т-1, Т-2 — рекуперативные теплообменники П-1, П-2 — печи Е-1 — сборная емкость К-2 —емкость орошения Н-1 — насос / — сырьевой га з II, IV, V —сухой газ высокого, среднего, низкого давления соответственно III — регенерированный абсорбент VI — нестабильный бензин [c.216]


Смотреть страницы где упоминается термин Абсорбционно-отпарные колонны газов: [c.285]    [c.295]    [c.159]    [c.210]    [c.51]    [c.207]    [c.226]    [c.240]    [c.242]    [c.246]    [c.29]    [c.136]    [c.38]   
Ректификационные и абсорбционные аппараты (1971) -- [ c.79 ]




ПОИСК





Смотрите так же термины и статьи:

Абсорбционная колонна

Абсорбционно-отпарная колонна

Абсорбционно-отпарная колонна для разделения углеводородных газов

Газы колонн



© 2025 chem21.info Реклама на сайте