Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Время влияние давления на скорость олефинов

    В настоящее время высокие давления нашли широкое применение в различных химических и смежных с ними производствах (синтез аммиака, метилового спирта и мочевины, гидрогенизация угля и тяжелых нефтяных остатков, гидратация олефинов, многочисленные полимеризационные процессы, получение карбонилов некоторых металлов, гидротермальный синтез кварца и др.). Осуществление в промышленности процессов под давлением порядка сотен атмосфер стало обычным явлением. Оно, в свою очередь, обусловило проведение широкого круга научных исследований для выяснения основных термодинамических и кинетических параметров промышленных процессов при высоких давлениях (данные Р — V — Г, химические и фазовые равновесия, явления переноса, влияние давления на скорость и направление реакций и т. п.). [c.5]


    Увеличение содержания водорода в газовой смеси повышает степень превращения этилена (рис. У.41) и в значительной мере определяет скорость реакции. Следует отметить, что влияние давления водорода неодинаково для различных олефинов так, оно проявляется значительно сильнее при карбонилировании пентена, чем этилена. При карбонилировании пентена скорость реакции растет пропорционально изменению парциального давления водорода, в то время как при карбонилировании этилена увеличение парциального давления водорода почти в два раза повышает конверсию этилена всего на 23%. [c.350]

    Время контактирования, необходимое для достижения оптимальной (но не обязательно максимальной) степени превращения, зависит в основном от концентрации катализатора и рабочей температуры, влияние которых рассмотрено выше. Обычная часовая производительность при оксо-процессе для гептенов составляет 0,8—1,1 объемов олефина на объем реакционного пространства. Для рабочих условий процесса температуры 175°, давления 180—200 ат и содержания кобальта около 0,3 вес.% эта скорость будет обеспечивать степень превращения олефина, равную 75—78%. Учитывая реакционный объем, занимаемый в реакторе синтез-газом, типичным временем контактирования можно считать 10—30 мин. [c.429]

    Чем выше давление, тем глубже идет полимеризация. Согласно механизму реакции полимеризации (см. 35), в конечных продуктах накапливаются непредельные углеводороды разветвленного строения. Однако при повышении температуры термодинамическая вероятность полимеризации резко падает, и равновесие смещается в обратную сторону. При температурах порядка 300—400° С, когда в зависимости от молекулярного веса алкенов термодинамически возможны и реакции полимеризации и распада, решающее значение приобретает скорость реакций. Энергия активации реакции полимеризации ниже энергии активации деструкции. Поэтому скорость реакции уплотнения выше. В этих условиях на характер конечных продуктов оказывает большое влияние и продолжительность крекинга. Чем больше время пре-.бывания сырья в зоне высоких температур, тем глубже идет распад продуктов уплотнения. В обычных условиях крекинга (температура порядка 500° С, давление до 70 ат) олефины, образовавшиеся при распаде предельных компонентов сырья или в результате уплотнения в начальный период крекинга низкомолекулярных алкенов, в основном претерпевают распад. Разложение олефинов может протекать в различных направлениях  [c.168]


    Этилен поглощается серной кислотой медленнее, чем другие газообразные олефины (например, в сотни раз медленнее, чем изобутилен). По мере образования этилсерной кислоты (этилсульфата), в которой этилен растворяется лучше, скорость поглощения этилена увеличивается. Но в связи с тем, что в то же время уменьшается концентрация серной кислоты, общая скорость реакции снижается. Нужная степень насыщения до 0,6 моля С2Н4 на 1 моль Нз804 в верхней части абсорбционной колонны достигается для 97,5%-ной кислоты за 1 ч 15 мин, т. е. почти вдвое быстрее, чем для 95%-ной Н- ЗО (2 ч 15 мин). Следовательно, целесообразно применять 97— 98%-ную кислоту. Оптимальная температура процесса 65— 75° С. С дальнейшим повышением температуры уменьшается количество образующейся этилсерной кислоты. Влияние давления на абсорбцию этилена представлено на рис. 76. С повышением давления возрастают скорость абсорбции и степень насыщения серной кислоты этиленом. Большое значение для процесса имеет интенсивность перемешивания. В производстве применяют барботажные колонны, эбеспечивающие более сильное перемешивание, чем насадочные башни. В ходе второй стадии идет гидролиз этил- и диэтилсульфата [c.191]

    Дэвис и сотрудники [56а] обстоятельно исследовали абсорбцию газообразных олефинов серной кислотой различной концентрации. Они нашли, что скорость абсорбции пропорциональна давлению олефина, если реакция проводится при постоянном объеме, и не зависит от перемешивания серной кислоты, не считая влияния увеличения поверхности кислоты при перемешивании, Повидимому, в поверхностной пленке реакция идет быстрее, чем в основной массе жидкости. Скорость абсорбции зависит в значительной степени от природы олефина. Например, 80%-ная и более концентрированная серная кислота растворяет пропилен в 300 раз скорее, чем этилен. Пропилен и бутилен-1 растворяются приблизительно с равной скоростью, которая в 1,7—2,6 раза меньше скорости растворения бутилена-2. Триме-тилэтилен абсорбируется в несколько раз быстрее, чем изобутилен, который в свою очередь реагирует в 10—80 раз скорее, чем бутилен-2. Изопропилэтилен реагирует с серной кислотой приблизительно с той же скоростью, что и пропилен. Отмечено, что при абсорбции 60%-ной серной кислотой изобутилен непосредственно превращается в третичный бутиловый сиирт, в то время как пропилен дает только изопропилсерную кислоту. При действии 80%-ной серной дислоты бутилен-2 превращается главным образом в спирт [566]. В оригинальной литературе [56 подробно рассмотрена возможность использования различия [c.15]

    Катализаторы типа молибдата кобальта применяют для удаления ацетиленовых соединений из газов пиролиза — обычно после выделения ароматических углеводородов и кислотных газов. Промышленный процесс чаще всего проводят при следующих условиях давление 5,2—15,7 ат и выше, температура 177—316° С, объемная скорость 500—1000 ч . Для повышения избирательности гидрирования ацетиленовых углеводородов и снижения скорости образования полимерных отложений во время реакции к поступающему газу добавляют водяной пар. По мере образования полимерных отложений активность катализатора постепенно снижается и, в конце концов, необходимо его регенерировать. Снижение активности можно компенсировать, прогрессивно повышая температуру процесса. Катализатор в известной мере отравляется небольшими количествами сернистых соединений, содерн ащимися в газе, но вредное влияние серы также можно устранить повышением температуры процесса. Загрязненный катализатор регенерируют (обычно после 4—6 недель работы) обработкой водяным паром или смесью водяного пара с воздухом и последующим восстановлением водородом прп 400—455° С [32]. Содержание ацетиленовых углеводородов удается снизить с 1—2% до менее 0,001% при крайне незначительной потере олефинов. [c.338]

    Повышение температуры и давления приводило к заметному увеличению количеств высококипящих веществ, однако их гидроксильное числобыло низким. Таким образом, повидимому, увеличение выхода высококипящих веществ не является результатом альдольной конденсации. Было обнаружено, что небольшое количество (0,2% загрузки) метилата натрия полностью подавляет то слабое гидрирование альдегидов, которое обычно имеет место в первой стадии оксосинтеза. В незначительной степени протекают вторичные реакции—образование ацеталей из альдегидов и спиртов и полимеризация олефинов в высококипящие полимеры. Альдегиды, являющиеся главной составной частью продукта, очень реакционноспособны, и поэтому из смеси трудно выделить компоненты. Для получения индивидуальных альдегидов целесообразно сначала весь продукт прогидрировать, полученные спирты подвергнуть фракционировке, а фракции спиртов переводить в альдегиды с помощью окисления или дегидрирования. Повидимому, синтез альдегидов из олефинов и смеси окиси углерода с водородом в первой стадии, оксисинтеза является гомогенной каталитической реакцией. Так, на скорость оксосинтеза пе оказывают влияния заметные количества сернистых соединений, в то время как водный раствор аммиака полностью подавляет синтез [4]. Это явление обусловлено, повидимому, образованием комплекса кобальта с аммиаком, сопровождающееся разрушением активного катализатора, которым, вероятно, является гидрокарбонил кобальта. Одновременно с синтезом альдегидов протекает каталитическая миграция двойной связи в олефинах. [c.382]


    Влияние высоких давлений на реакции, которые в настоящее время известны как реакции радикальной полимеризации олефинов, впервые изучено Конантом, работавшим на установке Бриджмена [204]. Он обнаружил полимеризацию стирола, винилацетата, изопрена и 2,3-диметилбутадиепа при комнатной температуре и давлении 9000—12 ООО ат, хотя при атмосферном давлении реакция в этих условиях практически не идет. Впоследствии другие исследователи отметили аналогичное увеличение скорости полимеризации в целом ряде систем [205—211]. [c.182]


Смотреть страницы где упоминается термин Время влияние давления на скорость олефинов: [c.508]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.84 ]




ПОИСК





Смотрите так же термины и статьи:

Олефины влияние

Скорость влияние давления

Скорость давлении



© 2024 chem21.info Реклама на сайте