Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидратация каталитическая бутена

    С точки зрения технологического применения большой интерес представляет реакция селективного каталитического окисления изобутилепа в метакролеин (окислы Ы, Со, Мо иммобилизированные на силикагеле комплексы Си и , 630 К) и далее в кислоту и эфиры [12, 13, 19]. По этой схеме разработан новый процесс получения метакриловых эфиров, особенно эффективный в случае предварительной гидратации изобутилена в трет-бути-ловый спирт. [c.14]


    Спирты, Старейший метод превращения олефинов в спирты заключается в том, что олефины поглощаются серной кислотой с образованием эфиров, за этим следуют разбавление и гидролиз, обычно при помощи пара. Этот метод до сих пор широко приме-няется. Для получения этилового спирта применяется также прямая каталитическая гидратация этилена. Высшие спирты образуются путем добавления окиси углерода и водорода к олефинам (процесс оксосинтеза). Некоторые спирты могут быть получены методами, не требующими наличия двойной связи в молекуле взаимодействие окиси углерода с водородом,, окисление пропана и бутана, гидролиз ал кил хлоридов, альдольная конденсация альдегидов. [c.577]

    Этиловый спирт можно получать из этилена двумя способами сернокислотной гидратацией и прямой гидратацией. Второй метод может иметь по сравнению с первым известные преимущества, за исключением случаев, когда на месте производства синтетического спирта имеются потребители разбавленной серной кислоты. Этиловый спирт в основном используют для производства ацетальдегида, уксусной кислоты, уксусного ангидрида и -бутилового спирта. Ацетальдегид и уксусную кислоту можно также получать из ацетилена или прямым окислением пропана и бутана . В другом способе получения уксусного ангидрида из нефти исходят из пропилена (через ацетон). Нормальный бутиловый спирт производят в настоящее время каталитической гидроконденсацией пропилена с окисью углерода. Однако все эти пути обхода этанола как сырья не затормозили расширения производства синтетического спирта. Перед войной в США из этилена получали только 10% этилового спирта, а в 1956 г. — больше 70%. В Англии перед войной этиловый спирт из этилена вообще не производили. В 1956 г. доля синтетического спирта в общем его производстве составила 33—40%, а сейчас строится новый завод, который увеличит эту долю до 60—70%. [c.403]

    Значительное количество этилена расходуется на производство этиленоксида. В большинстве развитых стран этиленоксид получают каталитическим окислением этилена. Наиболее распространенный катализатор — серебро на носителе. Основное количество (58%) этиленоксида используется в производстве этиленгликоля, применяемого для получения антифризов, полиэфирных волокон и других продуктов. Этиленоксид является также исходным материалом в производстве гликолей большой молекулярной массы, сложных эфиров, этаноламина и поверх-ностно-активных веществ. Гидратацией этилена получают этиловый спирт, который применяется в производстве бутадиена. Однако этот способ менее экономичен по сравнению с производством бутадиена из бутана и бутилена. Перспективным направлением использования этилового спирта является производство белково-витаминных концентратов (ББК). [c.269]


    Направления химической переработки углеводородов зависят от их свойств. Основные пути переработки пиролиз, каталитическое дегидрирование, окисление, гидрирование, гидратация, конверсия, галоидирование, нитрование, алкилирование, изомеризация, полимеризация, используемые для получения этилена, пропилена, бутана, ацетилена, альдегидов, спиртов, кислот, кетонов, галоидо- и нитропроизводных, полимерных материалов и т. п. Помимо этого, алкилирование, изомеризация и полимеризация углеводородов применяются для получения высокооктановых компонентов топлив. [c.493]

    При синтезе таких каучуков, как дивинилстирольный, дивинил-нитрильный, хлоропреновый, и ряда других применяются процессы эмульсионной полимеризации с использованием воды в качестве дисперсионной среды. Ряд промышленных процессов, к которым относятся, например, производство дивинила из нефтяных газов (бутана, бутиленов), производство изоп рена методом каталитического дегидрирования изопентана, производство стирола и метилстирола алкилированием бензола соответственно этиленом или пропиленом, гидратация ацетилена в ацетальдегид осуществляются в присутствии большого избытка водяного пара. В присутствии водяного пара протекает также процесс пиролиза углеводородов при производстве этилена и пропилена. [c.12]

    Реакция дегидрирования технически настолько разработана, что при ее проведении удается почти избежать крекирования. В настоящее время бутаны и пропан путем каталитического ступенчатого дегидрирования можно превратить в соответствующие олефины со средним выходом 85—90%, причем при однократном прохождении через печь достигается примерно 25%-ная степень превращения. В технике очень часто полученную дегидрированием смесь олефина и парафина после удаления водорода подвергают дальнейшим превращениям (например, полимеризации с целью получения моторного топлива, алкилированию изопарафинов, производству спиртов гидратацией с серной кислотой, превращению в хлоргидрин и т. д.). Непрореагировавший парафин снова возвращают на дегидрирование. Для проведения таких реакций в большем масштабе можно использовать природные газы, состоящие исключительно из парафинов, и газообразные продукты гидрирования угля. Этим значительно увеличивается сырьевая база химической промышленности алифатических соединений. Кроме того, в настоящее время без больших трудностей можно разделять олефины и парафины и получать чистые олефины. Отчасти благодаря реакции дегидрирования углеводороды природных газов нашли применение в качестве сырья для химической промышленности. Так, ступенчатым дегидрированием бутана, содержащегося в природных газах и газах переработки нефти, а также в отходящих газах гидрирования угля удалось осуществить синтез бутадиена. Изомеризацией в сочетании с дегидрированием из к-бутана можно получать изобутилен — важный исходный продукт для ряда промышленных синтезов. [c.60]

    Способы переработки углеводородных газов. Углеводородные газы (см, табл. 12 и 13) представляют собой сложные смеси. Для производства химических продуктов в большинстве случаев требуется сырье, включающее узкие фракции или якдивидуальные углеводороды. В связи с этим химической переработке предшествует подготовка сырья, важнейшим процессом которой является разделение газов с получением фракций или индивидуальных углеводородов. В промышленности используют следующие методы разделения газовых смесей компрессионный (конденсационный), абсорб-ционно-десорбционный, адсорбционно-десорбционный, низкотемпературную конденсацию и ректификацию. Направления химической переработки углеводородов зависят от их свойств. Основные пути переработки пиролиз, каталитическое дегидрирование, окисление, гидрирование, гидратация, конверсия, галоидирование, нитрование, алкилирование, изомеризация, полимеризация, используемые для получения этилена, пропилена, бутана, ацетилена, альдегидов, спиртов, кислот, кетонов, галоидо- и нитропроизводных, полимерных материалов и т. п. Помимо этого, алкилирование, изомеризация и полимеризация углеводородов применяются для получения высокооктановых компонентов топлив. [c.180]

    Синтез бутадиена в промышленности проводится методом каталитического дегидрирования бутана или бутиленов при температурах порядка 500—700° С применяют также этиловый спирт, полученный гидратацией этилена  [c.32]

    Кроме того, В. С. Гутыря занимался изучением каталитической очистки жидкофазного пресс-дистиллята, гидратации олефинов, термической дегидрогенизации пропана и бутана, а также получением данных для проектирования пефтестабилизационных и газолиновых заводов, технико-экономического анализа перегонки мазутов, подготовки нефтей к переработке, переработки искусственных нефтяных газов бакинских заводов. Несмотря на большое разнообразие изучаемых вопросов в основе всех разработок В. С. Гутыри зало-/кеи единый принцип бережного отношения к нефти как бесценному народному достоянию, универсальному сырью, из которого мояшо получить множество полезных продуктов. [c.8]


    Из ряда зарубежных работ (Тамеле [40], Блю [41], Кларка [42] и других) можно видеть, что максимальной каталитической активностью (по отношению к реакции полимеризации пропилена, изомеризации декалин-1-бутена, гидратации олефинов) обладают алюмосиликаты, обладающие максимальным содержанием на поверхности подвижных протонов (90% вес. Si02). Для гомолитических же реакций (реакции НгЧ--t-D2 >2HD, гидрогенизация этилена) наиболее активна чистая окись алюминия активность резко спадает по мере увеличения содержания АЬОз в алюмосиликате. [c.270]

    Природа гидроксильных групп на окиси алюминия была изучена Пери и Ханнаном [44] при помощи инфракрасной спектроскопии они нашли, что связь гидроксильных групп с поверхностью носит преимущественно ионный характер. Гидроксильные группы легко обменивают водород, но скорость обмена значительно ниже, чем скорость изомеризации бутена-1 в бутен-2 на том же самом катализаторе. Авторы поэтому выразили сомнение в том, что гидроксильные группы, обнаруженные при помощи инфракрасных спектров, каталитически активны в реакции изомеризации [45]. Для объяснения гидратации поверхности и каталитических свойств 7-окиси алюминия Пери [46] предложил модель поверхности у-оки-си алюминия. При помощи инфракрасных спектров он, кроме того, исследовал центры, которые хемосорбируют аммиак с образованием МП + ОН" по-видимому, именно эти центры изомеризуют олефины [47]. Они представляют собой ионную пару, т. е. кислотноосновные центры. [c.63]

    Основными видами реакций гидратации являются гидратация олефинов в спирты, ацетиленовых углеводородов в альдегиды и кетоны и нитрилов в амиды. При гидратации этилена образуется этиловый спирт гидратация прочих олефинов протекает обычно по правилу Марковникова нри этом образуются вторичные или третичные спирты Н—СН=СН,2 -Ь Н3О —> —>-Н—СН(ОН)СНз. Этот процесс лежит в основе промышленного способа получения спиртов — этанола, изопронаиола, бутано.ла-2, триметилкарбинола. Сырьем при этом служат одефины газов крекинга или др. попутных или отходящих газов нефтяной или химич. промышленности. Каталитическая гидратация олефинов — обратимая реакция, константа равновесия которой уменьшается с температурой поэтому ее выгодно проводить при низких температурах и высоких давлениях (при парофазных процессах обычно 150—300° и 10—300 ат). Процесс кислотной гидратации олефинов  [c.448]

    Реакторы, регенераторы и реакционные колонны установок каталитического крекинга, гидро-формиргга, платформинга цехов, дегидрирования бутана, гидратации этилена и т. д. [c.20]


Смотреть страницы где упоминается термин Гидратация каталитическая бутена: [c.60]    [c.325]    [c.325]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.343 , c.346 ]




ПОИСК





Смотрите так же термины и статьи:

Гидратация каталитическая



© 2024 chem21.info Реклама на сайте