Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидрирование природного газа

    Газообразные парафиновые углеводороды, как метан, этан, пронан и бутаны, имеются в большом количестве в природных газах, а также в отходящих газах нефтепереработки и установок гидрирования угля азотная кислота может быть просто и в любом количестве получена путем каталитического окисления аммиака. [c.278]

    На рис. 15 дана в упрощенном виде технологическая схема производства аммиака из природного газа. Как видно, схема является сложной. В нее входят пять каталитических реакторов реактор гидрирования сероорганических соединений 2, двухступенчатый конвертор метана (позиции 4 и 5), двухступенчатый конвертор окиси углерода (позиции 7 и 9), двухступенчатый реактор гидрирования окиси и двуокиси углерода, или метанатор (позиции 15 и 18), колонна [c.61]


    Водород. Появление больших количеств дешевого водорода с установок каталитического риформинга сделало экономически целесообразным широкое внедрение процессов гидрирования в нефтезаводскую практику (см. гл. IV о гидроочистке). Раньше основным потребителем водорода было производство аммиака, а основным источником водорода — конверсия метана (природного газа) с водяным паром. При температуре порядка 900—1000° С метан взаимодействует с водяным паром по реакции  [c.590]

    Гидрогазификацией называется процесс гидрирования твердого топлива с целью получения газа с высокой теплотой сгорания, который может служить заменителем природного газа. Гидрогазификацию осуществляют в условиях, способствующих максимальному превращению органической части топлива в газообразные легкие углеводороды такими условиями являются высокая температура, в интервале 500—750 С, давление водорода не более 5 МПа и применение катализатора, способствующего максимальному образованию метана. Часть газа гидрогазификации перерабатывают методом конверсии метана (см. с. 73) в синтез-газ и водород водород идет на собственные нужды процесса гидрогазификации. Остальной газ служит высококачественным энергетическим топливом или химическим сырьем. Для осуществления конверсии метана — газа гидрогазификации — предполагается в будущем использовать отбросную теплоту ядерных реакторов с температурой теплоносителя около 900°С. [c.55]

    Сероорганические соединения, находящиеся в газе, удаляют также поглотителями на основе окиси цинка при температуре 400—500°С. В процессе очистки окись цинка поглотителя превращается в сульфид цинка. В последнее время при производстве аммиака применяют двухступенчатую сероочистку природного газа на первой ступени — каталитическое гидрирование, на второй ступени — поглощение образующегося сероводорода поглотителем на основе окиси цинка. [c.47]

    Печи. По назначению печные установки делятся на нагревательные и реакционно-нагревательные, в которых нагрев приводит. к изменению структуры углеводородных газов. В результате образуются углеводороды, не встречающиеся в природных газах (процессы пиролиза, крекинга, гидрирования и дегидрирования). [c.46]


    Из таких углеводородов, как метап, этан и пропан, содержащихся в отходяш их газах гидрирования угля или в природном газе пиролизом при очень высоких температурах можно получить ацетилен. Проблема подвода большого количества тепла, необходимого для эндотермического процесса пиролиза, может решаться различными способами. Превращение метапа согласно уравнению [c.94]

    Реакцию можно проводить при температурах от 125 до 800— 900°С, однако высокие температуры благоприятствуют превращению метана в СО и водород. Гидрирование СО в метан подробно изучали с целью получения заменителя природного газа из продуктов газификации угля в СО и водород. Для максимально возможного выхода метана и минимального содержания монооксида углерода в продукте процесс следует вести при температурах ниже 350 °С. Чаще всего используются реакторы, показанные на рис. 1 и 2. Условия проведения реакции таковы  [c.121]

    Эта реакция принадлежит к уникальному классу реакций. Ее проводят в режиме окислительного дегидрирования, но она не является каталитической. Ранее говорилось, что дегидрирование этана в этилен — относительно высокотемпературный процесс. Дегидрирование метана в ацетилен представляет собой чрезвычайно высокотемпературную реакцию и идет при 1300— 1600°С, когда равновесие наиболее сильно сдвинуто в сторону образования этилена. Очевидно, металлические реакторы не могут быть использованы для реакции парциального окисления природного газа (метана) в силу того, что реакция происходит при температуре, превышающей температуру плавления нержавеющей стали или любых других распространенных металлов. Поэтому реакторы футеруют огнеупорным кирпичом, а теплообмен и теплоотвод осуществляют до контакта горячих газов с неметаллическими поверхностями. При более низких температурах контакт газов с металлическими поверхностями допустим, и окончательный отвод тепла производится в металлическом теплообменнике. Сильно нагретые продукты реакции охлаждаются путем впрыскивания воды непосредственно в газовый поток (рис. 4). При этом вода превращается в пар, который вместе с продуктами должен быть охлажден экономично и с пользой. При получении ацетилена его быстрое охлаждение является одной из решающих операций, препятствующей гидрированию ацетилена в этилен или этан. [c.148]

    Для синтеза аммиака и процессов гидрирования органических соединений необходим водород, значительную часть которого производят конверсией природного газа (в основном метана) с водяным паром [38, 39]. Первую стадию этого процесса осуществляют на никелевом катализаторе с получением синтез-газа, содержащего водород и окись углерода. Вторую стадию — конверсию окиси углерода с водяным паром — проводят на окислах железа и хрома. Ныне открыты катализаторы, содержащие окислы меди и медные шпинели, которые много активнее железохромовых и позволят полнее использовать СО в конверсии с водяным паром. [c.10]

    Пиролизу подвергали либо смесь метана с этаном, получаемую с установок гидрирования угля, либо метан из ближайшего источника природного газа. Реакцию проводили в охлаждаемой водой стальной трубе длиной 100 см и внутренним диаметром 9,5 см. Электроды были медными. Электрод, к которому подводилось высокое напряжение, находился в головной расширенной части реактора. Второй электрод, который был заземлен. Представлял собой медную прокладку в верхней части стальной трубы. Подвергавшиеся пиролизу газы входили в расширенную часть реактора, где они приобретали очень быстрое вихревое движение. После этого газы проходили через электрическую дугу и далее вдоль стальной трубы. Максимальная скорость газов в трубе составляла свыше 665 м. сек. Дуга постоянного тока работала под напряжением 7000 в при силе тока 1000 а мощность дуги при подаче газа 2800 л( /час равнялась 7000 кет. Наивысшая температура реаги  [c.275]

    К восстановительным способам очистки газа от сернистых соединений относят каталитическое гидрирование и гидролиз. Эти методы используют в тех случаях, когда в газе присутствуют различные сернистые соединения, которые невозможно полностью удалить более простыми и дешевыми способами, например абсорбцией или адсорбцией. В некоторых случаях эти методы наиболее эффективны для очистки как технологических, так и природных газов. [c.71]

    Вторая группа - процессы, основанные на восстановлении всех сернистых соединений в сероводород с последующим его извлечением. Эти процессы отличаются друг от друга прежде всего способом извлечения образовавшегося сероводорода из продуктов гидрирования и источником водорода (либо в схему включают блок получения водорода из природного газа, либо используют водородсодержащий газ с других процессов, на- [c.112]


    Концентрация водорода в нефтезаводских газах, поступающих на гидрирование, составляет 10—50%. При гидрировании сернистых соединений, содержащихся в природном газе или бензине к сырью добавляют 5—7% водорода. Концентрация же органических сернистых соединений не превышает 50 мг/м , т. е. в 10 —10 раз ниже концентрации водорода. [c.61]

    Наиболее взрывоопасен газообразный водород, как специально получаемый для гидрирования (или для последующего ожижения), так и образовавшийся в результате испарения жидкого продукта. Сообщалось, в частности, о взрывах в узлах очистки водорода жидким азотом, происшедших в Голландии и Японии. Причина этих взрывов заключалась в загрязнении газообразного водорода, получаемого конверсией природного газа, различными взрывчатыми соединениями, образующимися в процессе очистки водорода [157]. [c.176]

    На Руставском химзаводе была предпринята попытка применения для этой цели известного способа деструктивного гидрирования гомологов метана на никель-хромовом катализаторе которая закончилась неудачей. При этом было установлено, что данный способ, оправдавший себя при очистке отечественного природного газа, содержащего 5-10 гомологов метана / ,47,. совершенно не пригоден для очистки иранского газа, содержащего до 17% высших углеводородов. Гидроочистка газа с повышенным содержанием гомологов метана связана с В1 елением большого количества тепла, перегревом катализатора и выходом его из строя вследствие спекания и зауглероживания. В этом случае не помогает использование аппаратуры /57, специально разработанной с учетом необходимости быстрого отвода большого количества тепла. [c.53]

    Большинство современных установок паровой конверсии природного газа и жидких углеводородов в трубчатых печах снабжается системой очистки поглотителями на основе окиси цинка в сочетании с каталитиче-... им гидрированием (гидрогенолизом) сероорганических соединений. [c.90]

    На рис. 75 показана принципиальная схема использования для алкилирования фракции С4, выделенной из природного газа и содержат,ей бутилен и изобутан. Этот способ в настоящее время применяют на практике лишь в специальных случаях, с целью утилизации отходящих газов гидрирования угля и смолы. [c.319]

    Метан Природный газ Каменный уголь метан является побочным продуктом при разделении коксовых газов (1920—1930 гг.) или газов гидрирования угля (1930—1940 гг.) [c.24]

    НЕФТЕХИМИЧЕСКИЙ СИНТЕЗ — получение веществ путем химической переработки нефтепродуктов и углеводородов нефтяных и природных газов. Для этого используют процессы гидрирования, дегидрирования, алкилирования, галогенирования, полимеризации, конденсации, циклизации, окисления, нитрования, сульфирования и др. [c.173]

    Расход электроэнергии на процесс при применении газа гидрирования составлял 8,5 квт-ч, а при применении природного газа 9,5— [c.117]

    Таким образом, из углеводородов газов гидрирования, крекинга, переработки нефти, остаточных газов синтеза и природных газов превращением их в смесь СО+Н2 и последующего синтеза по Фишеру — Тропшу можно получить высокомолекулярные парафины. [c.78]

    Это явлеппе осложняет последовательное гидрирование ацетилена, в резульс тате которого получаются этилен и этан. При разложении фракции этан-пропан из природного газа Лесли п Занетти (см. выше) показали, что железо дает те же результаты, что и нпкель то же самое в отношении каталитического превращения этилена отметили Сабатье и Сандеран. [c.335]

    Для компримирования природного газа, поступающего в. технологическую схему с давлением (8—10)-10 Па до давления 4,6-10 Па, устанавливается турбокомпрессор с паровым приводом. Природный газ очищается от сернистых соединений методом гидрирования на кобальтомолибденовом катализаторе с последующим поглощением серы оксидом цинка при 350— 400 С. До компрессора для гидрирования к природному газу добавляется азотоводородная смесь. [c.204]

    Прегкде в Германии почти половину всего этилена готовили частичным гидрированием ацетилена. Однако но сравнению с другими методами получения этилена (дегидрирование н крекинг газов переработки нефти и природных газов, дегидратация этанола) этот метод экономически менее выгоден. [c.124]

    При получении водорода нередко используются высокие тем-пе[1атуры (700—1400 °С), прп которых небольшое количество азота, обычно находящееся в исходном природном газе, частично превращается в аммиак. Даже следы аммиака отравляют некоторые катализаторы гидрирования. [c.106]

    Принципиальная технологическая схема конверсии метана природного газа для производства азотоводородной смеси, применяемой в синтезе аммиака, показана на рис. 25. Природный газ под давлением около 4 МПа проходит подогреватель и подвергается очистке от серосодержащих соединений каталитическим гидрированием их в сероводород с последующей адсорбцией НзЗ. Очищенный газ смешивают с водяным паром в соотношении 3,7 1, подо- [c.76]

    Указывается, что это диктуется как более ограниченными, по сравнению с углем ресурсами природной нефти, так и якобы вполне уже благоприятной для промышленности искусственного жидкого топлива экономической конъюнктурой. Бензин, получаемый гидрированием угля, должен обходиться США в 22,6 цента за галлон (3,785 л), бензин, получаемый из угля по методу Фишера —Тропша,— в 19,2 цента за галлон и бензин, получаедшй по тому же методу, но из смеси СО и Н,, добываемой из природного газа,—8,8 цента. Последняя цена уже граничит со стоимостью бензина, получаемого из природной нефти обычными методами. ,  [c.212]

    До открытия месторождений природного газа в Голландии и под Северным морем источники сырья (в виде низших углеводородов) в Западной Европе были очень ограничены. Поэтому в результате дальнейших исследований фирмы Ай-Си-Ай процесс риформинга был распространен в 1954 г. на гидронетроль (синтетический бензин), который получается гидрированием при высоком давлении каменного угля и креозота. Следующей разработкой явился риформинг легкой нафтыТ(дистиллата, во многом подобного гидропетролю), которая стала использоваться для производства водорода вследствие все увеличивающегося во всем мире числа нефтеперерабатывающих заводов. Технические проблемы (особенно удаление серы из исходного сырья и разработка новых катализаторов, пригодных для риформинга этих, более высокомолекулярных углеводородов под давлением без образования углерода) были разрешены, и в 1959 г. фирма Ай-Си-Ай пустила первые установки риформинга нафты. Процесс с нафтой в настоящее время широко используется не только для его первоначального назначения — получения газа для синтеза аммиака, но также (процесс Ай-Си-Ай 500) для производства городского газа с калорийностью около 500 БТЕ/фут (4805 ккал м ). Этот последний процесс представляет значительную ценность для стран, которые не обладают собственными месторождениями природного газа. [c.82]

    Природный газ, сжатый в компрессоре до давления 4 МПа, проходит подогреватель 1, обогреваемый дымовыми газами конвертора метана 6, и поступает в систему очистки газа от сернистых соединений. Эта система состоит из реактора каталитического гидрирования 2 и адсорбера сероводорода 3 (см. 9.7.4). Очищенный от соединений серы природный газ поступает в сатуратор (паронасытительную башню) 4, в которой смешивается с водяным паром в отношении Н20 газ = 4 1. Образовавшаяся парогазовая смесь подогревается до 380°С в теплообменнике [c.223]

    Это дает возможность легко регулировать температуру нагрева и производить луск установки при работающей системе сероочистки.В двухступенчатой схеме (см.рис.77) природный газ или жидкие углеводороды смешиваются с водородосодержапдам газом и поступают в трубчатый подогреватель /, где нагреваются до 370-400°С. Б аппарате 2 на ко-бальт-молибденовом ктаализаторе производится гидрирование сероорганических соеданений. Затем газ поступает в один из аппаратов з с поглотителем. Аппараты обвязаны таким образом, чтобы любой из них можно было отключить для перегрузки поглотителя. Аппарат со свежим поглотителем включается последовательно за ухе работавшим аппаратом по ходу газа. Возможно также включение аппаратов в параллельную рабс . [c.99]

    Природный газ, идущий на конверсию, смешивается с азотоводородной смесью (АВС газ = 1 10), дожимается в компрессоре 20 до давления 45-46 ат и подается в огневой подогреватель I, где нагревается от 130-140 до 370-400°С. В реакторе проводится гидрирование сероорганических соединений до сероводорода на алюмо-кобальт-молибденовом катализаторе, а в аппарате 3 - поглощение сероводорода сорбентом на основе окиси цинка. Обычно устанавливаются два абсорбера, которые могут соединяться или последовательно, или параллельно - один из них может отключаться на перегрузку сорбента. Содержание серы в очшценном газе не должно превышать 0,5 мг/м газа. Газ смешивается с водяным паром в отношении пар газ = 3,5 + 4,0 1и парогазовая смесь поступает в конвективную зону печи конверсии 6. Работа печи детально рассмотрена выше. Конвертированный газ с температурой 800-850°С и давлением около 30 ат поступает в смеситель шахтного реактора 12. Сюда же компрессором 23 подается технологический воздух, нагретый в конвективной зоце печи до 480-500°С. В реакторе конвертируется оставшийся [c.253]

    Схема производства метанола при низком давлении (5,0-6,0 Ша) (рис. 81, 82). В последние годы получили широкое распросвтранение схемы синтеза метанола на низкотемпературных катализаторах при давлении 5,0-6,0 Ша. Низкотемпературные медьсодержащие катализаторы весьма чувствительны к соединениям серы поэтому природный газ (или жидкое сырье) должен очищаться до содержания серы не более I мг/м . Очистка проводится путем гидрирования сернистых соединений с последующей адсорбцией окисью цинка. Очищенный газ смешивается с водяным паром в отношении I 3 и с температурой 340-350°С направляется в подогреватель парогазовой смеси I, находящейся в конвективной зоне печи. Нагретая до 510°С парогазовая смесь поступает в реакционные [c.260]

    I - сепаратор 2 - компрессор природного газа 3 - огневой подогреватель 4 - аппарат гидрирования сернистых соединений о - поглотители / 5 6 - радиантная камера печи 7 - реакционные трубы О - горелки 9 - защитный котел 10. II - секции пароперегревателя 12 - подогреватель парогазовой смеси 13 - нотел-утилизатор 14 - воздухоподогреватель 15 - паросборник-сепаратор То -воздуходувка 17 - дымосос 18 - котел-утилизатор на конвертированном газе 19 - теплообменники 20 - сепараторы 21 - воздушный холодильник 22 - водяной холодильник 23 - отпарная колонна  [c.261]

    Процесс гиперсороции предназначен для того, чтобы обогащать и одновременно разделять на фракции по числу атомов углерода смеси газообразных углеводородов самого разнообразного состава, причем настолько разбавленные инертными газами, что выделять эти углеводороды ректификацией или масляной абсорбцией неэкономично. Особенный интерес представляет выделение этилена из газов, в которых он содержится в небольшом количестве, а также очистка от водорода газов специальных крекинг-установок, газов гидроформинга, газов с установок по гидрированию угля. Метано-водородные смеси, нолучаюшдеся в качестве верхнего продукта при промывке газов крекинга и дегидрирования в масляных абсорберах, а также при ректификации ожиженных газов по методу Линде, легко разделяются гиперсорбцией на составные компоненты. Так же хорошо подходит гиперсорбция для выделения пропана и бутана из сухого природного газа, т. е. для выделения их из смесей, содержащих эти углеводороды в небольших концентрациях. Однако разделение гиперсорбцией нарафинов и олефинов с одним и тем же числом атомов углерода технически еще невозможно. [c.178]

    В США разработан видоизмененный вариант процесса Фишера—Тропша, в котором сырьем служит метан из природного газа. Гидрирование окиси углерода проводят во взвешенном слое железного катализатора при [c.63]

    Сырьем для нроизводства ацетилена служил отбросный газ завода гидрирования угля для получения синтетп-ческого бензина, имеющий следующий состав 45% объемн. этана, 28% метана н 12% пропана, или природный газ, содержащий 92 — [c.117]

    На рис. XI.20 приведена примерная технологическая схема производства нентаэритрита, организованного фирмой Геркулес в Луизиане, п1тат Миссури. Завод представляет собой комбинат, производящий формальдегид гидрированием метанола, который получают из природного газа и водяного пара. Полученный формальдегид поступает на производство пентаэритрита [134, 135]. Пентаэритрит применяют в производстве алкидных смол, для получеипя пластификаторов, придающих пластифицированным плен- [c.723]


Смотреть страницы где упоминается термин Гидрирование природного газа: [c.36]    [c.212]    [c.76]    [c.97]    [c.224]    [c.82]    [c.222]    [c.12]    [c.13]    [c.60]    [c.366]    [c.82]   
Очистка технологических газов (1977) -- [ c.111 ]




ПОИСК





Смотрите так же термины и статьи:

Природные газы



© 2025 chem21.info Реклама на сайте