Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поверхность раздела фаз подвижность

    Причиной электрофореза, как и других электрокинетических явлений, служит наличие двойного ионного слоя (ДИС) на поверхности раздела фаз. При положительно заряженной дисперсной фазе коллоидные частицы вместе с адсорбированными на них положительными потенциалопределяющими ионами движутся к катоду, отрицательно заряженные противоионы диффузного слоя —к аноду. В случае отрицательного заряда частиц движение происходит в обратных направлениях. Дисперсная фаза смещается относительно дисперсионной среды по поверхности скольжения. Поэтому, измерив скорость электрофореза, находят потенциал коллоидной частицы, т. е. электрокинетический или (дзета) потенциал. Величина -потенциала характеризует агрегативную устойчивость золя и зависит от толщины диффузного слоя, концентрации и заряда противоионов. Скорость электрофореза определяют методом подвижной границы — наблюдают за передвижением границы между окрашенным коллоидным раствором и бесцветной контактной жидкостью. Наилучшей контактной жидкостью является ультрафильтрат самого золя. Для приближенных измерений используют воду. Сущность метода состоит в определении времени, за которое граница окрашенного золя переместит- [c.205]


    Простых и доступных методов прямого определения избытка растворенного вещества в адсорбционном слое на подвижных границах раздела пока не существует. Однако на поверхностях раздела жидкость — газ и жидкость — жидкость может быть точно измерено поверхностное натяжение, поэтому для определения адсорбции особенно важным является уравнение изотермы адсорбции Гиббса (1878). Гиббс установил зависимость между поверхностным избытком растворенного вещества Г и изменением поверхностного натяжения. [c.330]

    Третьим возможным механизмом образования двойного электрического слоя служит поверхностная ориентация нейтральных молекул, содержащих электрические диполи. Такой дипольный слой, ориентированный на поверхности, представляет собой фактически двойной электрический слой, не являющийся диффузным. Притягивая подвижные заряженные частицы, он может индуцировать вторичные, уже диффузные двойные слои, распространяющиеся вглубь по обе стороны от поверхности раздела фаз. [c.185]

    В распределительной жидкостной хроматографии обе фазы — подвижная и неподвижная — жидкие, несмешивающиеся друг с другом. Разделение веществ основано на различии в их коэффициентах распределения между этими двумя фазами. Для того, чтобы зафиксировать неподвижную жидкую фазу в колонке (или в тонком слое), применяют тонкоизмельченный твердый пористый носитель, который удерживает эту фазу на своей поверхности. Подвижная фаза движется через колонку и вступает в контакт с неподвижной фазой. Поскольку поверхность раздела между двумя фазами очень большая, то имеет место быстрое установление равновесия распределения компонентов смеси менаду этими двумя фазами. Если компоненты имеют хотя бы небольшое различие в коэффициентах распределения между подвижной и неподвижной фазами, то они движутся в колонке с неодинаковой скоростью и при достаточной длине колонки происходит их полное разделение. [c.333]

    Подобно теплопередаче массопередача представляет собой сложный процесс, включающий перенос вещества (массы) в пределах одной фазы, перенос через поверхность раздела фаз и его перенос в пределах другой фазы. Как известно, при теплопередаче обменивающиеся теплом среды в большинстве случаев разделены твердой стенкой, в то время как массопередача происходит обычно через границу раздела соприкасающихся фаз. Зта граница может быть либо подвижной (массопередача в системах газ—жидкость или пар—жидкость, жидкость—жидкость), либо неподвижной (массопередача с твердой фазой). [c.383]


    Микроскопический и ультрамикроскопический методы. Эти методы определения электрофоретической подвижности заключаются в определении скорости передвижения индивидуальных коллоидных частиц в электрическом поле при помощи микроскопа или ультрамикроскопа. Преимущество этого метода перед методом подвижной границы состоит в том, что при исследовании с помощью микроскопа частицы находятся в одной и той же окружающей их среде и отсутствует поверхность раздела между коллоидной системой и боковой жидкостью. Другое преимущество этого метода заключается в том, что для определения достаточно очень малое количество раствора. Недостаток этого метода тот, что нельзя исследовать электрофоретическую подвижность частиц в растворах с более или менее значительной концентрацией дисперсной фазы, так как в таких растворах наблюдение за перемещением отдельной частицы невозможно. Разбавление же системы чужеродной жидкостью всегда влияет на -потенциал. [c.210]

    Если в процессе разделения фазовые переходы повторять многократно, то можно получить высокую эффективность разделения. Так как фазовые переходы связаны с поверхностью раздела, подвижная и неподвижная фазы должны обладать большой поверхностью соприкосновения. Кроме того, вследствие наличия диффузионных процессов, снижающих эффективность разделения, обе фазы должны иметь относительно небольшую толщину взаимодействующего слоя. [c.8]

    И не может участвовать в общем движении жидкости. В электрическом поле, направленном параллельно поверхности раздела подвижная часть жидкости (внутренняя диффузная обкладка двойного слоя) движется поэтому к катоду (рис. 75). [c.463]

    Эти уравнения показывают, что разность гидростатических давлений в смежных фазах равна произведению межфазного поверхностного натяжения на кривизну поверхности. Это основные уравнения механического равновесия для подвижных (жидких) поверхностей раздела. Давления Р и Р" равны только в том случае, когда т. е. когда поверхность раз- [c.465]

    В модифицированной модели поверхность—диск [36] при изменении подвижности локальных поверхностей раздела для неравномерного утончения пленки в системах толуол—вода и анизол—вода получены выражения [c.290]

    Диффузионным потенциалом называется разность потенциалов, возникающая на поверхности раздела между двумя растворами, различающимися или по виду растворенного вещества, или по его концентрации. Эти скачки потенциала невелики они обычно не превышают 0,03 в и могут уменьшаться до нуля. Причиной их служит различие в подвижностях и, следовательно, в скоростях диффузии ионов различного вида. Рассмотрим только простейший случай, когда соприкасающиеся растворы содержат один и тот же электролит и различаются только по его концентрации. Обратимся к цепи (ХП1, 26). [c.438]

    Предложены также модели массопередачи, в которых учитывается, что вследствие подвижности поверхности раздела фаз скорость переноса в данной фазе должна зависеть не только от гидродинамических условий в этой фазе, но и в фазе, с ней взаимодействующей. При этом допускается возможность переноса турбулентности из фазы в фазу. Эти модели носят пока в основном только качественный характер. [c.398]

    Разделение смеси можно производить таким образом, чтобы одна из фаз (подвижная) перемещалась относительно другой (неподвижной). В этом случае, как и при установлении фазового равновесия, молекулы веществ разделяемой смеси по выходе из неподвижной фазы возвращаются в нее, попадая, однако, вследствие движения подвижной фазы не в прежний участок объема неподвижной фазы, а в новый, ближайший по направлению движения подвижной фазы объем. Многократное повторение элементарных актов фазовых переходов, большая поверхность раздела фаз и относительно небольшая толщина взаимодействующих слоев фаз обеспечивают высокую эффективность разделения многокомпонентных смесей веществ, обладающих близкими свойствами. [c.8]

    Более полного разделения можно достичь, если на эффект, вызываемый многократным установлением фазовых равновесий, наложить действие кинетического фактора. В тех случаях, когда используются кинетические явления (например, при молекулярной дистилляции), через поверхность раздела фаз и лишь в одном направлении переносятся молекулы только одного вещества. Если разделение смеси производить в таких системах, в которых одна из фаз (подвижная) перемещается относительно другой (неподвижной), то улавливание и удаление молекул, покидающих поверхность раздела фаз, осуществляется благодаря постоянному перемещению [c.7]

    Ности, вследствие чего именно здесь в наибольшей степени протекают процессы адсорбции. Ход реакции на поверхности раздела фаз в основном определяется находящимися на ней активными центрами. Частицы, которые удерживаются поверхностью, в общем не очень прочно связаны с поверхностью и имеют относительно высокую подвижность. В связи с этим поверхностная диффузия имеет более высокую скорость по сравнению со скоростью диффузии в объеме твердой фазы и сравнима по величине с диффузией в растворах. [c.432]


    Точно так же, как в экстракции по методу Крейга, разделение двух веществ происходит тем эффективнее, чем больше ступеней распределения, четкость хроматографического разделения возрастает с увеличением числа теоретических тарелок . Это число является характеристикой эффективности хроматографических колонок и зависит от скорости потока подвижной фазы и скорости распределения вещества между фазами, которая в первую очередь зависит от величины поверхности раздела фаз, т. е. от констант колонки (плотность упаковки носителя, размер зерен и пористость). [c.235]

    Диффузионный потенциал возникает на поверхности раздела двух растворов электролитов, различающихся либо по виду электролита, либо по концентрации. Причиной возникновения диффузионного потенциала является различие в подвижностях ионов электролита. Ионы, обладающие большей подвижностью, диффундируют в более разбавленный раствор с большей скоростью, поэтому поверхность соприкосновения двух растворов заряжается положительно со стороны более разбавленного раствора, если катион движется быстрее аниона. 06- [c.217]

    Диффузионный потенциал возникает на поверхности раздела двух растворов электролитов, различающихся либо по виду электролита, либо по концентрации. Причиной возникновения диффузионного потенциала является различие в подвижностях ионов электролита. Ионы, обладающие большей подвижностью, диффундируют в более разбавленный раствор с большей скоростью, поэтому поверхность соприкосновения двух растворов заряжается положительно со стороны более разбавленного раствора, если катион движется быстрее аниона. Образуется диффузный двойной электрический слой с соответствующим скачком потенциала. Эта разность потенциалов ускоряет медленно перемещающийся ион и замедляет более подвижный, пока не наступит состояние, при котором скорости ионов сравняются. Результирующий ток через границу станет теперь равным нулю. Таким образом, дальнейшее взаимное удаление зарядов прекращается. Стационарная разность потенциалов в пограничном слое между растворами называется диффузионным потенциалом. [c.181]

    Особенности условий равновесия на искривленных поверхностях лежат в основе так называемых капиллярных явлений. Если поверхность раздела фаз подвижна (поверхность [c.195]

    Как отмечалось выше, движение капель и пузырей в жидкостях отличается от движения твердых частичек наличием двух основных эффектов подвижностью поверхности раздела фаз и способностью капель и пузырей изменять свою форму. При промежуточных и больших значениях критерия Рейнольдса эти эффекты проявляются в наибольшей степени. В качестве примера на рис. 1.14, а представлены зависимости коэффициента сопротивления С от критерия Рейнольдса Яе для капель хлорбензола и дибромэтана в воде, полученные в работе [58], и аналогичная зависимость для пузырей, всплывающих в воде, построенная по данным Хабермана и Мортона, приведенным в работе [59]. На этом же рисунке для сравнения приведена зависимость коэффициента сопротивления от критерия Ке дпя твердой сферы. На рис. 1.14, б эти же данные представлены в виде зависимости предельной скорости движения от эквивалентного диаметра частиц. [c.37]

    Примечание, v - линейная скорость подвижной фазы а - коэффициент теплоотдачи Т - температура стенки реаигОра d - диаметр реактора а - поверхность раздела фаз 7,  [c.100]

    Отметим, что и в этой модели представление о а, как о силе упругой стягивающейся пленки, не имеет ясного физического истолкования, поскольку, проводя трехмерную аналогию, нам пришлось бы говорить о втягивающей силе вакуума, тогда как представление о молекулярных ударах, приводящее в подобной аналогии к обычному давлению, имеет совершенно определенный смысл. Это поверхностное давление совершенно реально, его можно из- мерить весьма точно, соединяя подвижный поплавок с динамометрическим устройством. На этом принципе основаны весы Лэнгмюра , которые позволяют измерять я с чувствительностью до 0,001 дин/см [6, с. 39]. На этих измерениях основаны механические методы исследования пленок. Пленки изменяют ке только механические, но и другие свойства поверхности раздела, в частности оптические и электрические. Соответственно существуют оптические и электрические методы исследования пленок. [c.98]

    В связи с необходимостью изучения как объемных, так и но верхностпых свойств жидкостей волновые и вибрационные методы исследования поверхностей раздела подвижных фаз получают все большее распространение [1—3, 7]. При этом используются разнообразные методы возбуждения и регистрации колебаний, в том числе и по изменению механического и. электрического импеданса вибратора [2, 3]. В то же время физика взаимодействия поверхностной волны и пробного тела-зонда (механизм переноса энергии) еще недостаточно изучена. В предлагаемой работе рассматривается выходное напряжение резонансного вибрационного датчика вязкости, зонд которого касается поверхности раздела фаз маловязких жидкостей. Взаимодействие капиллярных волн с источником аналогично таковому для плоских волн сдвига в вязкоупругой среде и является причиной избыточного затухания. [c.14]

    Разработанные в ГЖТФ представления о роли адсорбционных явлений и твердого носителя целесообразно использовать в жидко-жидко-твердофазной хроматографии для количественной характеристики хроматографических процессов и для измерения адсорбции хроматографируемых соединений на межфазных поверхностях раздела подвижная жидкая фаза—неподвижная жидкая фаза и неподвижная жидкая фаза —твердое тело (твердый носитель). [c.106]

    Особенности анализа микропримесей. При определении микропримесей корректность результатов анализа зависит от ряда специфических особенностей, связанных в основном с явлениями обратимой и необратимой адсорбции. Абсолютное количество определяемого вещества при анализе микропримеси становится соизмеримым с абсолютным количеством вещества, адсорбируемого на поверхностях хроматографической аппаратуры, а также на межфазных поверхностях раздела подвижной и пеподБигкной фаз и твердого носителя- [c.42]

    В природных дисперсных материалах, в том числе и торфе, перенос влаги, как правило, происходит в неизотермических условиях. При этом процессы термовлагообмена в капиллярно-по-ристых системах протекают наиболее интенсивно, когда они находятся в трехфазном состоянии [218], отвечающем наибольшей подвижности влаги под действием градиентов температуры. При низком влагосодержании материала (11- 0) термическая подвижность влаги мала вследствие высокой энергии ее связи с твердой фазой. При двухфазном состоянии торфа в нем возможна лишь термическая циркуляция массы без ее перераспределения Б объеме йи 1йТ = 0). Кроме того, с увеличением и уменьшается поверхность раздела жидкость — газ, определяющая тер-мовлагоперенос под действием градиента поверхностного натяжения. Следовательно, наибольшая термическая подвижность дисперсионной среды соответствует такому остоянию материала, когда его поры не полностью заполнены влагой и в достаточной мере развита поверхность-раздела жидкость — газ [231]. Влага порового пространства в данном случае разделена короткими пленочными участками, от термической подвижности которых и зависят значения термоградиентного коэффициента б. [c.76]

    Примечание, г — линейная скорость подвижной фааы а — коэффициент теплоотдачи Т т — температура стенки реактора й — диаметр реактора га — поверхность раздела фаз Т , с — температура и концентрация компонента на поверхности раздела фаз соответственно А — коэффициент массоотдачи Е — порозность слоя 1), эф и эф — аффективный коэффициент продольной и поперечной диффузии соответст 1енно Х эф и дф — эффективный коэффициент продольной и поперечной теплопроводности соответственно 1) , и Одф— эффективный ког<фициент продольной диффузии для подвижной ( азы и в грануле катализатора соответственно Хд и Хэф— [c.140]

    Начальная толщина пленки не имеет глубокого влияния, но критическое значение толщины должно быть известно, как граничное условие для оценки времени коалесценции [33]. Интерферомет-рические измерения критической толщины пленки дают значения от 400 до 1500 А [38]. Поэтому время коалесценции очень сильно зависит от ее колебаний. Число подвижных и неподвижных поверхностей раздела является устанавливаемым параметром, хотя в настоящее время нет надежного метода учета этого параметра в моделях. Однако использование модели параллель—диск для неравномерного утончения пленки на основе концепции неподвижности поверхностей оказалось успешным [36]. Показатель степени в зависимости от времени коалесценции от диаметра капли устанавливается при выборе той или иной модели. Таким образом, даже качественный учет основных факторов, влияющих на время коалесценции, позволяет корректно описать явление в реальных условиях. Определение параметров, очевидно, должно проводиться по экспериментальным данным. [c.292]

    Газо-жидкостиая эмульсия пргдсгавляет собой подвижную систему газо-жидкостных вихрей. Она возникает в объеме жидкости вследствие столкновения пузырьков и струй газа, движущихся с большой скоростью. Столкновение пузырьков и газонаполнение жидкости обусловлено кинетической энергией газа, поэтому при достаточно высокой скорости газа вся жидкость может превращаться в газо-жидкостную эмульсию независима ог наличия адсорбционных слоев на поверхности раздела газа и жидкости. [c.141]

    Типичная зависщость высоты пены от линейной скорости газа показана на рис. 2 (во введении). Всплывающие к поверхности жидкости пузырьки газа при барботаже (т. е. при низких и>г) обладают весьма малой массой и небольшой скоростью. Поэтому кинетическая энергия пузырьков невелика и ее может не хватить для преодоления механической прочности адсорбционного слоя на поверхности раздела жидкость — газ. В этом случае [158, 234] над слоем жидкости образуется слой малоподвижной пены, имеющей ячеистую структуру (Шр до 0,5—0,7 м/с). С увеличением скорости газа пузыри (ячейки) пены уменьшаются, а подвижность ее возрастает. При скорости газа 1—1,3 м/с можно наблюдать некоторое уменьшение объема пенного слоя, имеющего подвижный вихревой характер [231], однако при дальнейшем увеличении Шр растет и Н. Обычно при Шг = 3ri-Ч-4 м/с наблюдается разрушение пены и превращение ее в брызги, взвешенные в газе. Такой режим уже не удобен для практического использования из-за очень большого уноса жидкой фазы. [c.29]

    МПа). Возникла проблема создания непрерывно действующих фильтров с большей движущей силой, работающих при повышенном давлении. Примером может служить барабанный фильтр фирмы Хюттенверк Зонтгофен (ФРГ). Фильтр (рис. 3.13) имеет ячейковый фильтрующий вращающийся барабан I, который заключен в кожух 2 и снабжен штуцерами 6, 13, 17. Фильтрующая перегородка (перфорированный лист, покрытый тканью) расположена не на наружной поверхности барабана, а во впадинах ячеек 5. Кольцевое пространство между барабаном и кожухом разделено подвижными перегородками 8 на три или более герметичные камеры 3, 14, 16, предназначенные для подачи в них суспензии, промывной жидкости и сжатого воздуха для осушки осадка. Перегородки 8 помещены в гнезда 7 прямоугольного сечения, прижаты к барабану (к бортам ячеек) сжатым воздухом, подаваемым через штуцера 9, и обеспечивают уплотнение между камерами. Опорные подшипники барабана встроены в торцовые крышки кожуха. Гладкие нерабочие края барабана уплотнены в торцовых крышках кольцевыми уплотнениями типа сальника. К уплотнениям подается смазочная жидкость. Суспензия подается под давлением через штуцер 13 в камеру 14 и фильтруется на ячейках барабана, находящихся в этой камере, фильтрат отводится через дренажные трубки и распределительную головку в сборник фильтрата. В камере 16 осадок промывается жидкостью, подаваемой под давлением через штуцер 17. Осушка осадка вытеснением влаги сжатым воздухом происходит в камере 3. [c.190]

    Так, высокая полярность алкилсалицилата кальция способствует образованию двойного электрического слоя на поверхности раздела с твердыми телами. Это приводит к высокому собственно моющему действию присадок, т. е. опособности удалять с поверхности металла уже имеющиеся там углеродистые отложения. Сульфонатные присадки обладают хорошими солюбилизирующими и детергентно-диопергирующими свойствами, поскольку их мицеллы способны к солюбилизации и стабилизации на своих поверхностях значительного количества твердых частиц. Алкенил-сукцинимиды, не обладающие собственно моющим действием, вследствие высокой поляризуемости и подвижности обладают высокими солюбилизирующими и диспергирующе-стабилизирующими свойствами. [c.307]

    Метод Ленгмюра — Адама лишен этих недостатков. Он применим для поверхностей раздела воздух — жидкость. Длинную узкую кювету с плоскими парафинированными краями наполняют до краев маслом или водой. Эмульгатор наносят на поверхность с помощью шприца-микрометра, и образующийся мономолекулярный слой сжи-лшют подвижным парафинированным предметным стеклом (рис.П1.30). При уменьшении площади пленки сила действует на легкий дюралюминиевый поплавок. Чтобы молекулы пленки не проникали за поплавок, к нему одним концом присоединяют шелковую нить, другой конец которой лежит на поверхности кюветы. Сила, действующая на поплавок, слегка его смещает. Это передвижение определяют с помощью устройства лампа — зеркало — шкала. Смещение поплавка на 1 мм дает регистрирующееся отклонение зайчика на 20 см. [c.183]

    Эскью и Даниэль (1940) нриспособили эту кювету для пленок, растекающихся по поверхности раздела масло — вода, однако оказалось, что она пригодна только для масел, которые тяжелее воды. Просачивание пленки и вытекание жидкости из кюветы можно устранить, заключив ее в подвижное кольцо, которое можно сжимать между подвижными стеклянными барьерами (Брукс и Мак Ритчи, 1961). [c.184]

    Таким образом, затухание турбулентности происходит постепенно и непрерывно, и лишь у самой твердой стенки пульсационная скорость становится равной нулю, что соответствет вд = 0. В системах газ (пар) — жидкость и жидкость—жидкость, обладающих подвижной поверхностью раздела, силы поверхностного натяжения действуют подобно силам трения у твердой поверхности. Однако до сих пор достоверно не установлен истинный закон затухания турбулентных пульсаций с приближением к границе фазы, и величину т нельзя определить теоретически. [c.397]

    Примечание. Вертикальные линии в схематически изображенных электрохимических ячейках представляют собой поверхность раздела двух фаз, где имеет место возникновение скачка потенциала. Если при расчетах э.д.с. элемента учитываются разности потенциала на этих границах, то они обозначаются одними вертикальными линиями. Если же ставятся двойные линии, то разность потенциала на этой границе в общей э.д.с. элемента не принимается в расчет. Обычно это может быть на поверхности раздела двух жидких фаз (диффузионный потенциал), где, однако, можно создать гакие условия, чтобы скачок потенциала был пренебрежительно мал по сравнению с общей величиной э.д.с. элемента, вызванной в основном скачками по- тенциала на поверхности раздела жидкой и твердой фаз. Для этой цели чаще всего применяются электролитические ключи (мостики из стеклянной трубки, заполненные раствором электролита, ионы которого имеют практически одинаковую подвижность, например хлорид калия), с помощью которых контактируют две жидкие фазы. [c.133]

    Повышение температуры приводит к некоторому увеличению количества ионов, ибо в обычных условиях ионогенные молекулы в полимерах диссои ч рованы не полностью. В хорошо очищенных полимерах основным источником ионов являются процессы диссоциации с образованием положительно заряженных ионов. Для ряда полимеров, имеющих водородные связи, ионная проводимость может реализоваться и в результате самоионизации молекул. Процессы ориентации и кристаллизации таких полимеров приводят к тому, что водородные связи образуют длинные цепочки, через которые реализуется подвижность положительно заряженных ионов. Для кристаллических полимеров, содержащих малопроницаемые области молекулярной упорядоченности, движение ионов и диффузия примесей происходят по удлиненным путям в местах наибольшей дефектности структуры. В связи с этим увеличение числа дефектов в кристаллических полимерах приводит к росту g и коэффициента диффузии D. Для полимеров, имеющих надмолекулярные структуры, движение ионов в основном происходит через поверхности раздела внутри сферолитов и поверхностные слои на границах сферолитов. [c.201]

    Образо11ание тонких слоев этих соединений на поверхности металла вызывает яоявленне цветов побежалости, увеличение толщины слоя продуктов реакции лриводит к окалине. Стадии этого довольно сложного процесса включают адсорбцию газа на поверхности, реакции на поверхности раздела, фаз, образование зародышей кристаллов, образование поверхностного слоя и про-дессы диффузии подвижных частиц сквозь этот слой в обоих направлениях. Это движение обусловлено уменьшением концентрации реагирующих частиц на поверхности и возникшим вследствие этого градиентом концентрации диффундирующих по ионным вакансиям катионов металла (например, Си+) и одновременным движением дефектов электронов (дырок) (например, Си +) к поверхности раздела твердых фаз. На поверхности протекает окислительно-восстановительная реакция с образованием нового твердого вещества. Для системы Си/Оа происходит, например, образование оксида меди(1)  [c.436]

    Ид йз самой запйсй, пofeнцйaл, йбзнйкающии на поверхности раздела угольIсерная кислота, в общей цепи встречается дважды и притом с противоположными знаками. Можно мысленно удалить оба угольных электрода, тогда на их месте в цепи возникает граница раздела раствор [раствор. В этом случае э. д. с. всей гальванической цепи также будет складываться из суммы трех потенциалов двух потенциалов, возникающих на поверхности раздела фаз металл I раствор, и одного — на границе раздела раствор II раствор II. Внутри растворов солей (при одинаковых их концентрациях) и внутри металлической фазы скачка потенциалов не возникает. Тот скачок потенциала, который возникает на границе раздела растворов (так называемый диффузионный потенциал), имеет в общем сравнительно малую величину. Напомним, что возникновение этого скачка потенциалов обусловлено тем, чта различные ионы обладают неодинаковой подвижностью в растворе. [c.135]

    Для проведения БХ водную фазу делают неподвижной, закрепляя ее на твердом гидрофильном носителе — бумаге. Органическая (подвижная) фаза медленно перемещается по поверхности раздела фаз. Обе фазы предварительно должны быть взаимно насищены. [c.237]

    Термодинамический и электрокннетическнй потенциалы отли-ча[отся друг от друга. Они возникают в различных частях системы первый — на границе твердая поверхность — жидкость, а второй — на поверхности раздела между подвижным и неподвижным слоями жидкости. [c.80]

    Экспериментальные методы определения поверхностного натяжения применимы к двухфазным системам с легко подвижной, обратимо изменяемой поверхностью раздела газа с жидкостью или двух несмешивающихся жидкостей. Как правило, они основаны на измерении силы, уравновешивающей новерхяостное [c.189]

    Поверхностное натяжение жидкостей легко определяют прямым экспериментальным путем. Описанные в литературе многочисленные методы измерения поверхностного натяжения на жидких (подвижных) поверхностях раздела подразделяют на три основные группы 1) статические (методы капиллярного по,анятия и лежачей или висячей капли) 2) полустатические [методы максимального давления пузырька (капли), отрыва кольца, отрыва пластинки, взвешивания или счета капель] 3) динамические (методы капиллярных волн, колеблющихся струй). [c.310]

    В момент соприкосновения растворов ионы переходят из одного раствора в другой. Скорость перехода ионов из более концентрированного раствора в менее концентрированный будет больше, нежели скорость перехода ионов в обратном направлении. Так как подвижности катионов и анионов различны, то и количество их, проходящее в начале диффузии через границу соприкосновения растворов, будет различно. Если подвижность катионов больше, то их больше перейдет в менее концентрированный раствор, чем анионов. Тогда менее концентрированный раствор у поверхности раздела зарядится положительно, а более концентрированный — отрицательно. Вследствие этого скорость движения катионов начнет уменьшаться, а скорость движения анионов — увеличиваться. Через некоторое время скорости катионов и анионов сравняются и количества их, переходящие границу раздела между растворами, станут равными. Образуется двойной электрический слой с определенным скачком диффузионного потенциала. Диффузионные потенциалы невелики их величина не превышает нескольких сотых вольта. Точно измерить величину диффузионного потенциала трудно, так как она зависит не только от состава и концентрации прикасающихся растворов, но и от других причин, например формы сосуда. Поэтому при измерениях э. д. с. нужно сделать диффузионный потенциал возможно малым. Это достигается соединением двух различных электролитов солевым мостиком. Последний представляет собой концентрированный раствор соли, ионы которой обладают примерно одинаковой подвижностью (КС1, KNO3). [c.289]


Смотреть страницы где упоминается термин Поверхность раздела фаз подвижность: [c.193]    [c.52]    [c.291]    [c.438]    [c.40]    [c.395]    [c.316]   
Жидкостная экстракция (1966) -- [ c.203 , c.204 ]




ПОИСК





Смотрите так же термины и статьи:

Поверхность раздела фаз

Поверхность разделяющая



© 2024 chem21.info Реклама на сайте