Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Комплексы металлов разрушение, метод определения ионов

    Фотометрические методы определения неметаллов являются менее разработанной областью фотометрического анализа по сравнению с методами определения металлов. Многие неметаллы не образуют окрашенных соединений, и фотометрические методы их определения основаны на реакциях разрушения окрашенных соединений. Большой интерес представляют реакции образования разнолигандных (тройных, смешанных) комплексов, которые в последние 10—15 лет широко применяются в анализе. Это направление оказалось ценным и для разработки новых фотометрических методов определения неметаллов. Так, единственным прямым методом определения ионов фтора является метод, основанный на реакции образования разнолигандного комплекса церия с ализа-рин-комплексоном и фторидом. Ряд методов экстракционно-фотометрического определения других неметаллов также основан на образовании соединений этой группы комплексов. [c.9]


    Наиболее распространены методы определения фторид-ионов, основанные на реакциях разрушения окрашенных комплексов металлов. Фторид-ионы образуют комплексы с рядом катионов (железо, титан, цирконий и др.). С другой стороны, эти катионы образуют окрашенные комплексы со многими реактивами. Некоторые из окрашенных соединений разлагаются при действии ионов фтора. Фторидные комплексы металлов не очень прочны, поэтому для определения фтора можно применять только сравнительно малопрочные окрашенные комплексы металлов или необходимо создать такие условия реакции (например, повышая кислотность), при которых уменьшается их прочность. Это еще в большей степени относится к определению хлорид- и сульфат-ионов. [c.29]

    Соотношение в таком комплексе металла к хеланту принимается 1 1, замедление реакции нри значении pH 6,0 объясняется [313— 315] насыщением координационной емкости иона железа в результате его гидролиза, что приводит к разрушению смешанного комплекса. Можно также предположить, что разрушение комплекса при pH 6,0 связано с возможностью использования железом максимальной дентатности комплексона в результате диссоциации последнего атома водорода. Методом сдвига потенциалов полуволн восстановления определена константа устойчивости комплекса Ig — 8,0 [312]. На основании каталитической реакции окисления стильбексона разработан кинетический метод определения железа, отличающийся высокой чувствительностью (0,001 мкг Fe + в 1 мл) и избирательностью [310, 313—317]. [c.224]

    Метод разрушения ионитного комплекса. Сущ,ность метода состоит в разрушении ионитного комплекса более сильным, чем лигандные группы полимера, донором электронов или более сильным, чем ионы закомплексованного металла, акцептором электронов и определении равновесных концентраций всех участвуюш,их в реакции компонентов. На основании полученных данных рассчитывают константу равновесия н соответственно состав и устойчивость ионитного комплекса. [c.137]

    Фторид не образует окрашенных соединений, кроме некоторых смешанных комплексов, поэтому почти все фотометрические методы определения фторида основаны на разрушении окрашенных соединений различных лигандов с ионами металлов, которые об- [c.288]

    Было показано, однако, что иод каким-то образом взаимодействует с молекулами органической фазы так, что константа распределения в некоторой степени зависит от природы этой фазы. Можно предположить, что такой тип взаимодействия растворенного вещества с растворителем, иногда приводящий к образованию вполне определенных соединений (сольватов), широко распространен. В частности, такое явление наблюдается для большинства ионных соединений в водной среде, где полярные молекулы воды легко координируются всеми ионами, за исключением очень крупных. Координирование молекул воды сопровождается экзотермическим эффектом сольватации (гидратации) [уравнение (8.27)]. Энергия гидратации, однако, не выделяется в том случае, если образец экстрагируют в неполярный органический растворитель с низкой диэлектрической проницаемостью. Следовательно, ионные соединения обычно нельзя экстрагировать из водного раствора, если не подобрать какой-либо метод разрушения ионных зарядов. Этого можно достигнуть соединением ионов металла с подходящими хелатообразующими лигандами, которые имеют по одной электронодонорной и кислотной группе. В образующихся комплексах потеря энергии сольватации (гидратации) компенсируется энергией связей металл — лиганд. Ниже приведены типичные лиганды этого типа, которые были использованы в процессах жидкостной экстракции  [c.355]


    При разрушении сульфат-ионами комплекса бария с нитхромазо (2,7 -би-(4-нитро-2-сульфофенил)-азо-1,8-диоксинафталин- 3,6-дисульфокислота) в слабокислой среде окраска раствора изменяется от голубого до фиолетового цвета. Реакция выпадения сульфата бария идет замедленно в течение 6 ч на 98% за первые 1,5-2 ч. Реакцию проводят в 50-70%-м водно-ацетоновом или водно-спиртовом растворе. Соотношение ионов бария и нитхромазо должно быть 1 1. Определению мешают все катионы N1, Си, 8г, Са и других металлов, взаимодействующих с нитхромазо, поэтому лучше использовать вытяжки и растворы, пропущенные через катионит в Н -форме. Анионы фосфата и арсената мешают определению в больших концентрациях. В целом метод по избирательности и чувствительности по сравнению с другими методами имеет ряд преимуществ. [c.202]

    Осаждение сульфата бария используется в методах качественного обнаружения особенно многообразно применение этой реакции в методах количественного определения сульфатов. Издавна BaS04 используют в качестве осаждаемой и весовой формы при гравиметрическом определении сульфатов. На выделении осадка BaSOi из раствора основаны методы кондуктометрического и высокочастотного титрования, потенциометрического титрования с ионоселективными электродами, различные методы комплексонометрического определения SOi с многочисленными органическими металлоиндикаторами и методы фотометрического титрования сульфат-ионов. Многообразны варианты нефе-лометрического определения сульфатов, а также методы фотометрического определения, основанные на разрушении комплексов металлов о освобождением окрашенного неорганического или органическою лиганда в присутствии сульфат-ионов. [c.29]

    Для определения фосфора в органических соединениях широко используют химические, физико-химические, а также физические полумикро- и микрометоды [244, 246, 257, 260, 320—328]. Основными способами минерализации являются сожжение в колбе, наполненной кислородом [270, 271, 294, 296, 329—333], сожжение в трубке в токе кислорода, позволяющее определять С, Н и Р из одной навески, разрушение смесями кислот в открытой системе типа Кьельдаля или в запаянной трубке (окисление по Кариусу) [28, 146, 295, 300, 301, 334—337], сплавление с щелочными агентами в микробомбе или в калориметрической бомбе [4, 338—343]. Предложены восстановительные способы минерализации с использованием металлов и сплавов (А1, К, Мд, 2п) 1[21, с. 252 314, с. 228 344 345]. В последние годы установлена возможность определения фосфора после озоления вещества в низкотемпературной плазме [257—259]. Анализ заканчивают определением фосфора в виде ортофосфат-иона, используя методы неорганического анализа. Обязательной заключительной стадией минерализации является гидролиз фосфорсодержащих продуктов разложения с количественным переводом их в РО4 . Весовыми формами являются пирофосфат магния, фосформолибдат аммония или комплексы их с органическими осадителями (хинолин, стрихнин и т. д.). Комплексы можно определять титриметрически, используя растворы нитрата лантана, уранилацетата и церия. [c.174]

    Одной из наиболее важных особенностей природных вод является многообразие форм нахождения элементов. Состояние элементов в природных водах - результат сложных взаимодействий органических и неорганических веществ. Металлы в природных водах могут находиться в виде растворенных ионов, взвешенных частиц, лабильных и стабильных комплексов, как показано на рис. 1.2 [5]. Кроме того встречаются также соединения с различными типами химической связи (иоппые и ковалентные). Безусловно, при определении содержаний элементов в природных водах необходимо учитывать все возможные формы элемента, в противном случае результат анализа может оказаться ошибочным. В современной литературе широко представлены схемы идентификации и определения металлов с учетом форм нахождения электрохимическими методами и методами колоночной хроматографии. Для разрушения органических соединений, а также стабильных комплексов определяемых элементов с органическими лигандами широко применяют электрохимическую обработку и иУ-излучепие [6 - 8]. [c.7]


Практическое руководство (1976) -- [ c.89 ]




ПОИСК





Смотрите так же термины и статьи:

Комплексы ионов металлов,

Комплексы металлов комплексы металлов

Комплексы металлов определение

Комплексы, определение

Металло-азо-комплексы

Металлов комплексы

Металлы определение методом ААС

Метод разрушения

Определение иония

Разрушение металла



© 2025 chem21.info Реклама на сайте