Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Неорганические кислоты метод анализа

    Производства неорганических веществ заняты получением и переработкой минеральных кислот, щелочей, солей, минеральных удобрений, силикатных материалов и т. п. Рассмотрим примеры применения химических методов анализа в контроле этих производств. [c.330]

    В последнее время в анализе неорганических кислот широко применяют методы титрования в неводных и полуводных средах. В среде неводных растворителей можно быстро и с достаточной точностью определять индивидуальные минеральные кислоты, такие, как фосфорная [334], азотная [99, 334, 342], серная [99, 334 339, 377], хлорная [99, 334, 339] и другие [99, 334]. Возможно дифференцированное титрование двух- и трехкомпонентных смесей как неорганических, так и смесей неорганических и органических кислот, не прибегая к их предварительному разделению [16]. Так, смеси серной и хлорной кислот [464] титруют в среде метиленхлорида потенциометрическим методом. Высокочастотный метод применен [333] для дифференцированного определения смесей минеральных кислот в уксусной кислоте и в гликолевых растаорителях [337]. Дифференцированное титрование двухкомпонентных смесей минеральных кислот, например серной и фосфорной, азотной и фосфорной, серной и хлористоводородной и других, кондуктометрическим методом можно проводить в среде этилового спирта [343] и уксусной кислоты [58, 332]. [c.131]


    Лаблюдаемый в последнее время быстрый научный и техниче- ский прогресс в области химии м химической технологии органических и неорганических веществ вызывает острую необходимость дальнейшего развития аналитической химии и разработки новых более эффективных химических, физических и физико-химических методов анализа, соответствующих современным требованиям науки и производства. Одним из перспективных путей развития аналитической химии является направление, которое связано с разработкой теории и практики методов анализа, основанных па использовании реакций, протекающих в неводных растворах [1—26]. Основное преимущество использования неводных растворителей в качестве сред для определения различных веществ состоит в том, что в среде неводных растворителей можно дифференцированно (раздельно) титровать смеси электролитов, которые в водном растворе характеризуются близкими значениями р/С, например смеои изомеров, смеси соединений одного гомологического ряда, смеси кислот, оснований и т. д. [c.5]

    Анализ различных продуктов, содержащих неорганические кислоты и смеси неорганических и органических кислот, имеет большое практическое значение. Особый интерес представляет анализ смесей органических кислот с серной, соляной и азотной кислотами, поскольку многие процессы органического синтеза протекают в присутствии указанных кислот. Однако известные методы [c.130]

    Известно, что первым продуктом окисления полимеров является гидропероксид. Количественно гидропероксиды можно определить на основе их способности окислять органические и неорганические соединения. Наиболее распространенный метод анализа - иодо-метрическое титрование. Для этого навеску полимера помещают в смесь уксусной кислоты и насыщенного раствора иодида калия в спирте (этиловом или изопропиловом) или бензоле. Иод, выделившийся в результате реакции  [c.407]

    В анализе неорганических галогенидов методом высокочастотного титрования исследуемый раствор подкисляют уксусной кислотой, чтобы избежать гидролиза титранта — ацетата ртути(П) [4 77]. [c.141]

    Минерализация. Количество взятого на минерализацию раствора зависит от содержания в анализируемом фосфорсодержащем органическом соединении фосфата и от чувствительности используемого для определения фосфата метода. При определении неорганического фосфата методом Фиске—Суббароу на минерализацию берут такое количество исследуемого раствора, чтобы в 1 мл полученного после минерализации и нейтрализации раствора содержалось от 0,2 до 1,0 мкмоль фосфата. 1—2 мл взятого на анализ раствора помещают в небольшую колбу для сжигания (колбу Кьельдаля) или жаростойкую пробирку, добавляют 0,3 мл концентрированной серной кислоты и, укрепив колбу (пробирку) слегка наклонно, осторожно нагревают раствор на горелке, песчаной бане или на специальной электрической плитке до тех пор, пока почти полностью выпарится вода и раствор в колбе приобретет бурую окраску (если органического вещества в пробе мало, то по-бурения можно и не заметить). После этого колбу (пробирку) охлаж- [c.44]


    Для анализа пероксидов в окисленных органических веществах рекомендуется метод, основанный на восстановлении железом (И), и иодометрические методы. В большинстве предложенных иодометрических методов в качестве восстановителя пероксидов применяют иодид-ион в уксусной кислоте с добавлением сильной неорганической кислоты или без нее. Примерами таких [c.256]

    Бёрча - Хюккеля реакция 1/542 Бескислородные соединения защитные газы 2/326 неорганические кислоты 2/777-784 Бесконтактные методы кондуктометрия 2/895-897 контроль проводящих сред 2/48 термометрия 4/1077 Беспропеллентные аэрозольные упаковки 4/196 Бессемеровское производство 3/95 Бессточные производства 1/466 Бесстружковый анализ 1/542, 543 3/431 [c.559]

    При определении валовых форы микроэлементов по К.В. Веригиной образец почвы обрабатывают смесью плавиковой и серной кислот (после прокаливания в муфеле для удаления органических веществ). Остаток после разложения почвы переводят в солянокислый раствор и извлекают из него в виде комплексных дитизонатов медь (при pH 2), смесь цинка и кобальта (при pH 8,2). Разрушив дитизонат, определяют медь фотометрически в виде комплекса с диэтилдитиокарбаминатом. Поскольку дитизонат цинка легко разлагается разбавленной хлороводородной кислотой, его отделяют от кобальта и определяют фотометрически с дитизоном. Содержание кобальта определяют также фотометрически в виде оранжево-красного комплекса с нитрозо-К-сояью (после разрушшия дитизоната). Таким образом, метод К.В. Веригиной позволяет определять фотометрически три микроэлемента из одной порции раствора. Однако, извлекая медь дитизоном, приходится строго выдерживать pH 2, так как при pH 3 уже возможно частичное соизвлечение цинка, а при pH 6 — даже кобальта. Помимо э гого длительные операции извлечения цинка и кобальта в виде дитизонатов, последующее разрушение дитизоната цинка для отделения от кобальта, повторная экстракция дитизоном, разрушение дитизоната кобальта смесью неорганических кислот — все это сильно усложняет анализ, делает его громоздким. В этом случае также целесообразнее отделять кобальт от цинка методом ионообменной хроматографии. [c.356]

    ГОСТ 5211—50 предусматривает определение в пластичных мазках на мыльных загустителях содержания мыл, связанных и свободных высокомолекулярных органических кислот и минерального масла путем экстракции растворителями и титрования. Однако ТОСТ 5211—50 не всегда удовлетворяет требованиям современной промышленности. Ассортимент отечественных пластичных смазок расширился за счет применения, в частности, смазок на основе литиевых И кальциевых мыл 12-оксистеариновой кислоты, растворимость кото рых предусмотренных указанным методом анализа растворителях ((бензол и спирт — бензол) низка. В связи с этим появляется необходимость применения больших объёмов растворителей, ухудшается четкость экстракционного разделения, увеличиваются затраты труда и времени на проведение анализа по ГОСТ 5211—50, Кроме того, получаемая по этому методу информация недостаточна для полной характеристики состава современных пластичных смазок из-за отсут- ствия данных по содержанию и составу присадок, неорганических наполнителей, восков, компонентному составу жирных кислот и т. д. [c.332]

    Цеолиты X и в аммонийной и водородной формах. Спектроскопические исследования бренстедовской и льюисовской кислотности. Прогревание цеолита V в НН -форме при 250-400° С в инертной атмосфере приводит к разложению иона аммония, потере адсорбированной воды и одновременно к появлению в ИК-спектре в области валентных колебаний ОН-групп узкой высокочастотной полосы при 3650 см и более широкой низкочастотной полосы при 3550 см . Таким образом получают водородную форму цеолита , или цеолит НУ переведение цеолита У в Н-форму путем прямого ионного обмена невозможно из-за неустойчивости каркаса фожазита в жидких неорганических кислотах. Согласно многочисленным данным, полученным методами ИК-спектроскопии [47 -52], ЯМР широкого разрешения [53] и рентгеноструктурного анализа [54], высокочастотная полоса отвечает ОН-группе с нормальным расстоянием связи О —Н, где атом водорода локализован на атоме 0(1) решетки и расположен в большой полости (структура 20). [c.21]

    За последнее время разработаны методы анализа, при помощи которых МОЖНО определять в неводных растворах индивидуальные СОЛИ неорганических и органических кислот и их смеси, а также смеси солей с кислотами или основаниями. [c.294]

    Метод диазотирования применяется для анализа ароматических соединений, в молекуле которых есть аминогруппа. В основе его лежит реакция диазотирования — взаимодействие между ароматическим амином и азотистой кислотой в присутствии избытка неорганической кислоты. Реакция протекает в несколько стадий и приводит к образованию диазосоединений. [c.322]


    Хорошей иллюстрацией может служить тот факт, что до 1954 г., т. е. до того момента, когда было предложено уравнение, учитывающее влияние концентрации и pH элюента на разделение анионов слабых неорганических кислот [3], две школы исследователей в двух различных лабораториях эмпирически пытались разработать метод анализа смесей практически важных соединений — слабо конденсированных фосфатов. Обе группы потерпели неудачу. [c.124]

    Разработан метод определения кислот С1—СЮ с ванадатом аммония, основанный на образовании в кислой среде полизанадатов, окрашивающих раствор в желто-оранжевый цвет. Метод отличается простотой и быстротой выполнения анализа, однако в присутствии неорганических кислот метод неспецифичен, что ограничивает его применение в производстве СЖК- [c.67]

    Неорганические соединения. Газовая хроматография успешно может быть применена для анализа неорганических кислот и металлов, в том числе и в форме катионов. Особенно перспективно ее использование для анализа следов неорганических соединений. Поскольку неорганические соединения, как правило, нелетучи, то предварительно получают их летучие производные, которые затем анализируют газохроматографически. Успех анализа определяет обычно первая стадия — получение стабильных летучих производных. Основы этого метода анализа рассмотрены в монографии Анваера и Другова [18]. [c.47]

    Хроматографические методы занимают особое место среди физико-химических методов анализа, являясь прежде всего универсальным способом разделения элементов. Они выгодно отличаются от всех других известных методов разделения высокой специфичностью (избирательностью действия), позволяют осуществить разделение весьма близких по свойствам неорганических или органических веществ. Так, например, хроматографическим путем разделяют смеси катионов металлов щелочной группы, щелочноземельных металлов, редкоземельных элементов, элементов-двойников, таких как цирконий и гафний разделяют смеси геометрически изомерных комплексных соединений (например, цис-транс-язомерных комплексов платины или кобальта) отделяют микроколичества трансплутониевых элементов от основной массы урана или плутония, а также от продуктов деления разделяют смеси анионов галидов, кислородных кислот галогенов, фосфорных кислот, аминокислот, смеси органических соединений, являющихся пред- [c.9]

    Описанные ранее (с. 122) методы определения следов карбонильных соединений в принципе пригодны для анализа ацеталей, кеталей и виниловых эфиров. Методы с применением кислотных реактивов, например гидрохлорида 2,4-динитрофенилгидразина, можно использовать непосредственно, так как кислота в реактиве быстро гидролизует эти соединения в свободные карбонильные соединения, которые и будут реагировать с собственно эеактивом. Если используются некислотные реактивы, ацетали, кетали и виниловые эфиры сначала необходимо гидролизовать зазбавленной неорганической кислотой для выделения карбонильного соединения. [c.399]

    Предложены также методы титрования в среде кетонов и других дифференцирующих растворителях двух-, трех-, четырех-, пяти- и шестикомпонентных смесей сильных, слабых и очень слабых органических и неорганических кислот [358, 362, 364]. Разработаны методы определения смесей азотной кислоты с органическими кислотами (нитробензойными, нитрофенолами, а-оксиизо-масляной кислотой) в среде метилэтилкетона [365] и двух- и трехкомпонентных смесей азотной кислоты с моно-, ди- и окси-карбоновыми кислотами (азотная адипиновая -f щавелевая) в среде метилового спирта [341, 342]. Большое практическое значение в производстве фосфорной кислоты имеет разработанный метод анализа смесей фосфорной и серной, фосфорной и азотной кислот в присутствии триоктиламина [451]. [c.131]

    Интересный метод разработан [473] для определения ангидридов и хлорангидрндов в присутствии неорганических и органических кислот. Неорганическую кислоту определяют титрованием в среде диоксана затем раствор нагревают с этиловым спиртом и хлорангидрид определяют титрованием выделившейся соляной кислоты. Содержание органической кислоты определяют по разности после определения общей кислотности. При анализе смеси ангидрида и органической кислоты исследуемое вещество титруют в среде диоксана спиртовым раствором метилата натрия, причем ангидрид титруется как одноосновная кислота. Другую часть раствора нагревают с пиридином и титруют раствором гидроокиси триметилбензиламмония в присутствии тимолового синего, причем ангидрид титруется как двухосновная кислота. Из двух титрований вычисляют содержание ангидрида и кислоты. Определение ангидридов в присутствии кислот описано и в других работах [474]. [c.137]

    Метод анализа неорганических и органических солей имеет боль-шое практическое значение. Определение многих индивидуальных солей неорганических кислот и оснований не представляет особых трудностей, так как для них известны весовые и некоторые объемные методы анал1иза водных растворов. Однако прямое кислотпо-пснопное титрование большинства солей в водных растворах в ряде случаев невозможно. Что же касается определения солей органических кислот, то для них вообще нет быстрых и удобных методов анализа. Известные методы, которые применяют для анализа этих оолей, основанные на предварительной дистилляции кислоты, выделяющейся при действии на анализируемые соли серной илт фосфорной кислот и последующей абсорбции ее избытком щелочи, относятся к довольно трудоемким химико-аналитическим операциям. Прн определении солей нелетучих кислот, как, например, солей бензойной кислоты и других, метод дистилляции еще более осложняется и бывает необходима экстракция выделившихся кислот эфиром или другие операции. Кроме того, эти методы при всей их сложности недостаточно точные. [c.141]

    Наиболее широко неводные растворы применяются в анализе кремнийорганических мономеров и полимеров. Кремнийорганичес-кие соединения (КОС) в отличие от многих неорганических и органических соединений не растворяются в воде и в водных растворах кислот и оснований подавляющее большинство этих соединений гидролизуется водой, претерпевая при этом весьма существенные изменения. Поэтому известные химические и физико-химичес-кие методы анализа, разработанные для анализа водных растворов неорганических и органических веществ, непригодны для анализа КОС. Наиболее перспективным способом анализа КОС являются методы, основанные на титровании их в неводных растворах. [c.165]

    Методы термического анализа нащли широкое применение при детальном исследовании термической устойчивости кристаллогидратов неорганических соединений, количественном описании процессов дегидратации и разложения. В настоящей работе для определения стадии, лимитирующей скорость реакции термического разложения, был использован метод изотопного звмещения, который часто применяется с целью выяснения механизмов органических реакций [1, 2]. В литературе отсутствуют сведения об использовании изотопного замещения при изучении термических превращений неорганических гидратов методами неизотермической кинетики. Мы полагали, что с помощью изотопного эффекта можно установить различия в кинетических характеристиках термиче ского разложения исследуемых кремве,-12-водьфрамовой л фосфор-12-вольфрамовой кислот (КВК и ФВК) на тех стади- [c.32]

    Анализ известных способов получения имидазолинов позволяет выделить два основных направления их синтеза. Первый путь предусматривает использование в качестве электрофиль-ных реагентов нитрилов, изонитрилов, иминоэфиров, амидинов, а второй — карбоновых кислот и их производных (низших алкиловых эфиров, амидов солей щелочных металлов, амидоаминов). В качестве нуклеофильных реагентов используют олигомеры полиэтиленамина (этилендиамин, диэтилентриамин, три-этилентетрамин и т. д.) или аминоспирты (моноэтаноламин, N-гидроксиэтилэтилендиамин). Этилендиамины применяют в виде оснований или солей с неорганическими кислотами, арил-сульфокислотами. При использовании в качестве электрофиль-ных реагентов нитрилов, иминоэфиров, амидинов процесс получения имидазолинов протекает в сравнительно мягких условиях с высоким выходом целевых продуктов. Недостатком данных процессов является сложность получения электрофильных реагентов и их неустойчивость. Для промышленного внедрения более перспективными являются методы синтеза имидазолинов, основанные на реакциях нуклеофильного присоединения этилен-диаминов по карбонильному атому углерода алифатических кислот или их производных (эфиров, амидоаминов). [c.349]

    СТЫМ водородом или выделяют РЬ(ЫОз)г концентрированной азотной кислотой [817]. Специфичны и не сопровождаются потерями примесей химические реакции восстановления металлов в кислых >астворах. В качестве восстановителя при анализе чистых ртути 1273] и серебра [1274] предложена муравьиная кислота. Серебро при восстановлении его солей образует коллоид, и для полного удаления его из раствора вводят ртуть с целью образования амальгамы. Реакции осаждения труднорастворимых солей сильных неорганических кислот, характерными примерами которых служат выделение Са, Ва [325], Sr [633] и РЪ [331] в виде сульфатов, РЬ в виде РЬС1г [204, 1206] и Bi в виде Bib [333] достаточно избирательны и протекают при значительной концентрации кислоты. Высокоселективное осаждение элементов основы органическими реагентами требует значительных затрат дефицитных реактивов, чистота которых часто не отвечает необходимым требованиям. Методы разделения, включающие осаждение циркония миндальной кислотой [518, стр. 483], молибдена а-бензоиноксимом [329] и никеля диметилглиоксимом [326], из-за небольшой исходной навески являются скорее способами отделения неблагоприятной для спектрального определения основы, чем методами концентрирования. [c.309]

    Разбавление, НААА раствора ЭТА с водородно-аргоновым пламенем, неорганические эталоны Разбавление, анализ раствора в ВЧИСП Гидридный генератор, НААА гидрида Разбавление, обработка смесью кислот, анализ раствора в ВЧИСП Озоление с угольным порошком, ДЭА золы Озоление с оксидом галлия, ДЭА золы Сухое озоление, ПААА раствора Разбавление смазкой, ДЭА методом двухстадийного испарения [c.302]

    Анализ литературных данных показывает, что обычно в качестве подвижных фаз используются главным образом неорганические кислоты (НС , НВг, HNO3 и др.) Для более эффективного разделения и концентрирования некоторых микроэлементов методом экстракционной хроматографии набор лигандов, конечно, может быть расширен, например, как в статической экстракции. [c.429]

    Отличительной чертой хроматографических методов является возможность их широкого применения. Хроматография может быть использована ДЛЯ разделения как больших, так и малых количеств элементов. Она может быть с одинаковым успехом применена к органическим и неорганическим веществам, для больших и малых молекул, для анионов и катионов. Кроме того, имеется возможность применять разнообразшле растворители и элюенты. В области-аналитической химии хроматография открывает большие возможности для разделения редкоземельных металлов, для отделения ниобия от тантала, гафния от циркония и т. д. Она может приобрести также большое значение для упрощения некоторых продолжительных методов анализа. Так, например, при определении пятиокиси фосфора в апатите сначала из раствора - Саз(Р04)а извлекают хроматографически ионы Са +, а затем титруют освобожденную фосфорную кислоту. Техника хроматографии разнообразна, но для аналитических [c.183]

    Фотометрические методы определения большого числа прймесей приведены в технических условиях на методы анализа кремния и его неорганических соединений [33], которые охватывают определение 23 элементов-иримесей с чувствительностью 10" —10" °/о- Полярографический метод применен к определению в кремнии примесей девяти металлов [34]. Исходят из навески 5 г, которую растворяют в смеси фтористоводородной и азотной кислот. Достигается чувствительность Определяемые элементы разделяются на три группы а) Ре и Т1 б) Си, Сс1, N1 и 2п в) В1, РЬ, 1п и 2п. Более дробное разделение не требуется. [c.36]

    Недавно Цаугг и Кнокс [265] описали метод анализа, при котором молибденовая кислота, растворенная соответствующим образом, перемешивалась с 2-октанолом. После этого добавляли нитратный буфер и разделяли фазы. Абсорбцию молибдена измеряли в органической фазе и сравнивали с абсорбцией эталонного раствора, приготовленного из определенного количества неорганического фосфора, обработанного аналогичным образом. [c.142]

    Одна из проблем, связанных с развитием технической химии, заключалась не только в исследовании готовых продуктов, но и исходных веществ это предопределило возникновение аналитической химии, как необходимой помощницы химика в его поисках. Нельзя считать, что в XVI в. существовали настоящие аналитические методы. Хотя и были известны некоторые реакции неорганических веществ, протекающие при нагревании, однако им не было дано еще правильного объяснения. Тем не менее ятрохимики внесли определенный вклад, разработав мокрые способы качественного химического анализа. Так, уже говорилось, что осаждение серебра соляной кислотой из азотнокислого раствора применялось для распознавания как серебра, так и соляной кислоты. Тахений, Сильвий, Ван Гельмонт и другие пользовались различными реакциями осаждения и цветными реакциями для распознавания металлов в растворе с этой целью применялись щелочные растворы (гидроокиси, карбонаты) и настой дубильных орешков. Ятрохимики были еще очень далеки от настоящего систематического метода анализа, но уже догадывались о возможности придать таким поискам точно определенную цель, а именно распознавание составных частей тел. Немного позднее Бойлю удалось уяснить эту цель и создать настоящую качественную аналитическую химию на научных основах. [c.75]

    В давние времена считалось, что кристаллы представляют собой большую редкость. Действительно, нахождение в природе крупных однородных кристаллов — явление нечастое. Однако мелкокристаллические вещества встречаются весьма часто. Выше было сказано, что твердое состояние м атерии обычно эквивалентно кристаллическому состоянию. Так, например, почти все горные породы граниты, песчаники, известняки и т. п. кристалличны. Кристалличны почти все руды, являющиеся сырьем металлургической промышленности. Кристалличны также и те продукты металлургической промышленности, которые получаются в результате переработки руд,— все металлы и их сплавы. Из мелких кристалликов состоят также все строительные материалы. Большинство твердых продуктов химической промышленности также кристаллично (квасцы, селитра, купорос, сода, нафталин и т. д.), а жидкие химические продукты, например ряд продуктов нефтяных производств или неорганические кислоты, легко могут быть получены в кристаллическом состоянии при низких температурах. По мере совершенствования методов исследования (сначала визуальные методы, затем микроскопия, рентгеновский анализ, электронография и т. п.) кристалличными оказывались вещества, считавшиеся до того аморфными. [c.11]

    В настоящем параграфе изложены наиболее важные для аптечной пракЛки методы объемного анализа различных кислот. В фармации применяются как неорганические кислоты, например, соляная, серная, азотная, борная, фосфорная, так и многие органические кислоты, например, уксусная, бензойная, виннокаменная, лимонная, муравьиная, салициловая, трихлоруксусная и ряд других кислот. Ниже описаны важнейшие методы определения некоторых из этих кислот. [c.490]

    До самого последнего времени химики-аналитики имели дело преимущественно с реакциями, протекающими в водных средах. Поэтому химические и физико-химические методы анализа, применявшиеся в аналитической практике, основывались главным образом на наблюдении явлений, протекающих в водных растворах. В случае анализа веществ, подобных кремнийорганическим соединениям, которые нерастворимы в воде и в зодных р-астворах кислот и оснований, необходимо растворять их в органических растворителях. Многие кремнийорганиче-с.кие соединения растворимы в органических растворителях, в то время как неорганические силикаты и алюмосиликаты 3 них нерастворимы. [c.68]

    Задачей так называгмых пргдварительных, или ориентировочных, исследований является выбор отправных точек и направления исследования. Это имеет существенное значение для открытия индивидуальных соединений при помощи характерных реакций и для химического анализа смесей. Такой способ исследования особенно полезен при аналитическом изучении огромного числа разнообразных органических веществ, для которых (не существует систематических схем анализа, подобных схеме анализа неорганических веществ. При анализе смеси органических соединений в лучшем случае можно достигнуть выделения некоторых индивидуальных соединений или представителей некоторых классов соединений. Для этой цели изучают растворимость исследуемого вещества в кислотах, основаниях и в органических растворителях, возможность перегонки при атмосферном давлении и с паром, возможность возгонки или разделения при помощи адсорбции (хроматография). На проведение предварительных исследований часто расходуют большое количество вещества и затрачивают много времени этн исследования не всегда применимы, часто не совсем надежны и неизбежно связаны с потерей вещества. Кроме того, число химических реакций органических соединений, имеющих аналитическое значение, пока все еще ограничено и, таким образом, в распоряжении исследователя имеется очень мало специфических и избирательных реакций, пригодных для обнаружения таких соединений. Любые ориентировочные данные или указания, которые можно извлечь из предварительных исследований, проведенных методом капельного анализа с малой затратой времени и вещества, имеют большое значение при анализе органических соединений. [c.86]


Смотреть страницы где упоминается термин Неорганические кислоты метод анализа: [c.338]    [c.11]    [c.121]    [c.138]    [c.277]    [c.309]    [c.90]   
Акваметрия (1952) -- [ c.230 , c.251 ]




ПОИСК





Смотрите так же термины и статьи:

Кислота методы

Кислоты неорганические



© 2025 chem21.info Реклама на сайте