Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полярографический метод потенциал полуволны восстановления

    Полярографический метод. Это один из наиболее надежных и ТОЧНЫХ способов определения малых количеств формальдегида в водных и водно-органических средах. Сущность его заключается в ТОМ, что некоторые вещества способны восстанавливаться на капельном ртутном электроде, причем восстановление происходит при строго индивидуальном напряжении, названном потенциалом полуволны [264]. В середине 30-х годов было найдено [1], что формальдегид полярографически активен, потенциал полуволны его fi/j (при использовании каломелевого электрода сравнения) равен —1,63 В. При pH 12,7 1/2 —1,465 В [264], По высоте волны на полярограмме судят о содержании формальдегида в растворе. Ацетальдегид и высшие альдегиды восстанавливаются при более высоких потенциалах, метанол, этанол и другие спирты определению не мешают. [c.118]


    Капролактам легко превратить в е-аминокапроновую кислоту (калиевую соль) кипячением с 10 н. раствором гидроокиси калия. Дальнейшая конденсация быстро происходит в этом же щелочном (или в нейтральном) растворе. Шиффово основание можно полярографировать в широком интервале pH. Однако величина предельного тока сильно зависит от концентрации водородных ионов раствора. В кислых и щелочных растворах предельный ток мал и чувствительность метода невелика. Наибольшая высота полярографической волны наблюдается в интервале pH 8,2—8,6. В этих условиях потенциал полуволны восстановления шиффового основания равен —1,12в по отношению к насыщенному каломельному электроду. Избыток введенного формальдегида также восстанавливается на ртутном катоде, но полярографическая волна расположена в области более отрицательных потенциалов и не мешает определению капролактама. [c.254]

    Свинец в шлаках обычно определяется полярографическим методом на фоне соляной кислоты. Трехвалентное железо метает определению, поэтому его восстанавливают до двухвалентного, прибавляя к раствору металлическое железо в виде порошка. Потенциал полуволны восстановления свинца составляет —0,43—0,45 в по отношению к каломельному электроду- [c.82]

    В большинстве случаев хиноны и гидрохиноны дают обратимые полярографические волны, потенциал полуволны которых почти равен стандартному потенциалу. Вследствие простоты реакции эту систему часто используют для испытания новых полярографических методов. Если не нужна высокая точность, полярография является более удобным методом определения стандартных потенциалов серии родственных хинонов, чем потенциометрия. Поляро-грамму легко записать для полярографии требуется очень небольшое количество вещества и ее можно применять к системам, в которых одна из форм претерпевает изменение за период времени, необходимый для потенциометрического титрования. Например, полярография была использована для определения влияния размеров внутреннего жета-мостикового кольца на процесс восстановления хинонов [35]. [c.116]

    Таким образом, при помощи полярографического метода можно проводить анализ раствора одновременно на несколько катионов, так как величина потенциала полуволны при восстановлении [c.270]

    Рассмотрим, как влияют неводные растворители на основные показатели полярографического метода анализа потенциал восстановления (потенциал полуволны) и высоту полярографической волны. [c.466]


    Перекиси различных типов широко используются в качестве окислителей. Окислительные свойства органических перекисей могут изменяться в широких пределах. Окислителями являются почти все перекиси, поэтому можно смело сказать, что восстановление перекисной группы можно осуществить без труда очень легко осуществить восстановление перекисей электроаналитическим методом. Именно восстановление перекиси лежит в основе обескислороживания растворов при анализе полярографическим методом. При этом сначала происходит восстановление растворенного кислорода с образованием перекиси водорода, а затем восстановление самой этой перекиси. Обычно полярографическая волна восстановления перекисей оказывается необратимой, иными словами, термодинамически необратима соответствующая электрохимическая реакция, в результате чего эта волна не имеет желаемой 5-формы с почти вертикальным центральным участком. В действительности, волна, как правило, оказывается растянутой и несимметричной. Это затрудняет (если не делает вообще невозможным) определение потенциала полуволны однако несмотря на это, в анализе можно получить прекрасные количественные результаты. [c.200]

    Эвальд и Лим [87] изучили полярографическим методом (применяя стационарный платиновый микроэлектрод) восстановление двухвалентной меди в одновалентную. Потенциал полуволны в реакции [c.57]

    Особое значение имеет величина концентрации ионов водорода при полярографировании органических соединений, потенциал восстановления которых определяется не только их природой, но и в значительной мере кислотностью раствора. Это связано с тем, что в большинстве случаев в реакции восстановления молекул органических веществ принимают участие ионы водорода. Примером может служить восстановление нитробензола, примесь которого в техническом анилине определяется полярографическим методом (см. стр. 270). В кислой среде электрохимическому восстановлению нитробензола (при pH 2) соответствует потенциал полуволны в]/2 = —0,15 в, а в нейтральной Е /2 = = —0,47 в. Повышение кислотности сдвигает потенциал полуволны в сторону его менее отрицательных значений. [c.244]

    Выполнение определения полярографическим методом. Метод основан на способности метилметакрилата восстанавливаться на ртутно-капельном электроде. Восстановление происходит при значении потенциала полуволны—1,91 в на фоне насыщенного раствора иодида тетраметиламмония в 92%-ном водном растворе метилового спирта по уравнению [c.262]

    Форма кривой сила тока — напряжение и, тем самым, величина потенциала полуволны могут изменяться под влиянием различных факторов. Так, например, потенциалы восстановления ионов металлов, присутствующих в растворе в виде аквакомплексов, изменяются при образовании комплексов с другими лигандами. При комплексообразовании обычно наблюдается смещение потенциала полуволны в сторону более отрицательных значений. Исследование такого смешения в зависимости от концентрации комплексообразующего вещества позволяет найти состав и константы образования комплекса. На потенциал полуволны может также оказывать влияние pH раствора, которое связано с изменением или природы имеющихся комплексов или продуктов электролиза. Преимущество полярографических методов по сравнению с другими электрометрическими методами в том, что электролизу подвергается лишь небольшой объем раствора, и, кроме того, концентрация вещества, подлежащего исследованию, в этом растворе может быть очень малой. Количественные полярографические исследования, как правило (исключения см. гл. 1), возможны только тогда, когда имеются следующие предпосылки. [c.211]

    Интересный способ определения содержания кобальта в солях никеля состоит в предварительном окислении o + до Со " перборатом натрия в аммиачном буферном растворе [16]. После разрушения избытка окислителя сульфатом гидроксиламина раствор полярографируют в пределах от —0,2 до —0,8 в. Потенциал полуволны Со + равен —0,4 в. Определению не мешают мышьяк, кадмий, сурьма, олово, цинк и, если находятся в умеренных количествах, висмут, медь, железо, марганец, молибден. Свинец н хром, присутствующие в больших количествах, удаляют путем осаждения хлоридом бария или сульфатом натрия. При содержании кобальта около 0,1% ошибка определения не превышает 2,6%. В 0,01 М растворе триэтаноламина и 0,1 М растворе КОН было определено содержание свинца и железа в пергидроле и меди, свинца и железа в плавиковой кислоте и фториде аммония в количестве 1.10 —5.10 % [17]. В растворе фторидов проводилось также определение олова, основанное на получении его комплексных ионов [18]. Разработан метод определения растворимой окиси кремния в уранилнитрате, основанный на полярографическом восстановлении кремнемолибденового комплекса [19]. Можно определить 2 мкг ЗЮг с точностью до 10%. Мешают ванадий и железо. [c.83]


    Ртутный капающий электрод использовался как индикаторный при амперометрическом титровании мышьяка(П1) винной кислотой [118, 639]. В основе метода лежит реакция образования мышьяком(1П) полярографически активного комплекса с винной кислотой, потенциал полуволны восстановления которого составляет — 1,16 в. Титрование проводят на фоне 0,1 М H2SO4 в присутствии 20% этанола и 0,005% желатина. [c.89]

    Гутманн и Шёбер [4] для отделения неводного растворителя от электрода сравнения, содержащего воду, рекомендуют специальную мембрану (стеклянная пористая перегородка, наполненная жидким стеклом), которая имеет незначительное омическое сопротивление и по крайней мере в течение 24 час препятствует заметному смешению водной и неводной фаз. Плесков [5] предложил метод нахождения значений нормальных потенциалов, не содержащих ошибки, обусловленной появлением диффузионного потенциала. Он исходил из предположения, что ионы НЬ и Сз" " практически не сольватируются и значения их нормальных потенциалов в большинстве растворителей равны между собой. Влчек [6] распространил эти представления на область полярографических исследований. Однако так как во многих средах очень трудно определить значения гютенциалов полуволн ионов рубидия и цезия, то в качестве потенциала сравнения он [б] предлагает использовать величину потенциала полуволны восстановления ионов калия, для которого, как предполагали, также характерна незначительная степень сольватации. [c.437]

    Определению цинка в рудах мешают многие элементы кобальт, хром (III), теллур, селен, германий, волна восстановления которых почти полностью совпадает с волной восстановления цинка, а также повышенные содержания марганца, ванадия и никеля, потенциал полуволны восстановления которых близок к потенциалу полуволны восстановления цинка, что может исказить его полярограмму. Мешают также большие количества меди, оказывающие специфическое влияние на форму полярографической волны цинка. Оно особенно значительно сказывается иа результатах анализа при применении. метода двух отсчетов [33]. Определению цинка мешает также большое содержание в пробе железа и алюминия, с гидроокисями которых заметно соосаждаются ионы цинка как, по-видимому, за счет их сорбции, так и за счет химического взаимодействия ионов цинка с гидроокисями. При этом образуются труднорастворииые соединения типа шпинелей [13], вследствие чего даже многократное переосаждение гидроокисей аммиаком почти не уменьшает потери цинка за счет поглощения его осадком. [c.91]

    Полярографическими методами определяются только два редкоземельных элемента — европий к иттербий. Потенциал полуволны восстановления трехвалетного европия до двухвалентного равен — 0,67 в и трехвалентного иттербия до двухвалентного—1,42 в относительно [c.145]

    Методы нахождения значений стандартных электродных потенциалов, не содержащих ошибок за счет появления диффузионного потенциала, описаны в гл. XII. Влчек [А, V1 с е к, 1951] распространил представления о практическом совпадении нормальных потенциалов ионов рубидия и цезия во всех неводных растворителях на область полярографических исследований. Однако, поскольку во многих средах очень трудно определить значение потенциалов полуволн ионов рубидия и цезия (вследствие электрохимической неустойчивости растворителей), то в качестве потенциала сравнения Влчек предложил использовать величину потенциала полуволны восстановления иона калия, число сольватации которого в большинстве растворителей мало. [c.303]

    Величина потенциала полуволны при восстановлении каждого вида ионов имеет вполне определенное значение. Это позволяет проводить качественный анализ раствора. Высота полярографической волны пропорциональна концентрации восстанавливающегося вещества [уравнение (Х.8)], и поэтому ее измерение служит для количественных определений. Полярографический метод весьма чувствителен и позволяет проводить количественные определения вплоть до концентраций порядка 10 11юль/л. Применяемые в настоящее время для этой цели [c.198]

    Для проверки гипотезы о том, что при полярографическом восстановлении ароматических кетонов потенциал полуволны связан с энергией локализации электрона на кислородном атоме карбонильной группы, были рассчитаны по методу МО величины р для бензальдегида, бензофенона и дибензальацетона 35]. Оказалось, что с возрастанием р в ряду этих веществ наблюдается сдвиг 1/2 в положительную область в кислой среде, когда происходит перенос лишь одного электрона и одного протона. Присутствие электронодонорной группы —СНз в а-поло-жении к карбонилу увеличивает электронную плотность на атоме кислорода, в результате чего энергия, необходимая для присоединения электрона к карбонильной группе, значительно больше, чем в отсутствие группы —СНз, и ацетофенон восстанавливается при более отрицательных значениях потенциалов, чем бензальдегид. Отмечено [35], что для кетонов справедлива установленная ранее Макколом зависимость, связывающая 1/2 с энергией первого незанятого молекулярного уровня. [c.50]

    В области электрохимии пповодилось изучение кинетики реакций быстро-го переноса заряда [216] и реакций адсорбции методами хронопотенциометрии и полярографии с использованием восстановления комплекса Т1(1) - дицик-логексил-18-краун-6. Сообщается также, что потенциал полуволны при двухэлектронном полярографическом вогстановлении Mg + [2, 2, 1]-криптата в карбонате пропилена быд более катодным, чем при восстановлении сольватированного катиона Mg + [ 218]. В тонкой пленке дибензо-18-краун-6, помещенной между двумя электродами, покрытыми напыленным серебром, наблюдалось электронное переключение между двумя электропроводящими состояниями [2191. [c.258]

    Таким образом, нахождение величины потенциала по- туволны является основой качественного полярографического анализа. Площадка диффузионного тока хорошо различима на полярографической кривой, если потенциалы полуволн веществ отличаются друг от друга более, чем на 0,1-0,2 В. В этом случае на одной полярограмме можно получить хорошо выраженные волны нескольких веществ. Такая кривая носит название полярографического спектра. Например, полярографический спектр смеси веществ, содержащей определяемые катионы, снимается в диапазоне от О до -2,0 В, так как в этом интервале происходит восстановление почти всех катионов. Если разница потенциалов полуволн двух ионов меньше 0,1-0,2 В, две волны сливаются в одну. Для повышения разрешающей способности полярографического метода используют различные способы обработки сигнала (см. 6.5.4.7) или варьируют состав фонового раствора таким образом, чтобы изменить взаимное расположение потенциалов полуволн соседних веществ (см. 6.5.4.6). [c.741]

    Полярографический метод может дать также некоторое представление о строении молекул органических соединений, характере функциональных групп и заместителей и их взаимном расположении. Известно, что между природой заместителей и сдвигом потенциала полуволны органического соединения существует определенная связь. Так, введение в ацетон фенильного радикала облегчает восстановление в большей степени, чем замещение водорода метильным радикалом. Карбоксильная группа, введенная в бензольное ядро нитробензола, смещает потенциал восстановления нитрогруппы в положительную сторону больше, чем гидроксильная группа или атомы хлора. При полярографировании динитробензола легче всего восстанавливается п-динитро-бензол, а труднее всего — -динитробензол. Восстановление карбонильной группы в альдегидах облегчается наличием в молекуле сопряженных двойных связей акролеин СНг = СИ—СНО восстанавливается легче пропионового альдегида СН3СН2СНО и т. п. [c.225]

    Эти данные показывают, что введение в молекулу углеводорода нитро-группы существенно облегчает восстановление для дифенила потенциал полуволны в растворах диметилформамид— иодид-ион составляет —2,57 В отн. нас. к. э. [47], а для нитродифе-нила он составляет —1,16 В [46]. На потенциале окисления влияние нитро-групп, напротив, почти не сказывается. Отмечают, что по данным расчетов методом Хюккеля введение нитро-группы весьма сильно изменяет энергию низшей вакантной орбитали, но энергия высшей заполненной орбитали оказывается примерно такой же, как в незамещенном углеводороде [48]. Восстановление нитротерфенилов при потенциалах первой полярографической волны приводит к соответствующим анион-радикалам. Попытки получить катион-радикалы в диметилформамиде и в ацетонитриле остались безуспешными. [c.342]

    Для определения свободной концентрации лиганда в систе мах В, 23, А используются и другие экспериментальные методы Например, если вспомогательная центральная группа 58 вое станавливается обратимо на капельном ртутном электроде при более положительном потенциале, чем требуется для восстановления В, то свободную концентрацию лиганда можно получить полярографически при условии, что потенциал полуволны системы А был определен заранее как функция от а (см. гл. 8, разд. 3, В). Значение а может быть найдено также из измерений растворимости труднорастворимого комплекса 23Ас в растворе, содержащем В, при условии, что известны значения произведения растворимости 23Ас и константы устойчивости 93А (см. гл. 9, разд. 3, А). Значения с(с>0) и, следовательно, а можно определить спектрофотометрически, если ЙАс является единственной формой, которая заметно поглощает при используемой длине волны (см. гл. 13, разд. 1,Г). Аналогично использовался биологический кинетический метод (см, гл. 14, разд. 1,А) для определения концентрации свободных ионов кальция при исследовании цитратных комплексов магния и стронция [27]. [c.86]

    Инверсионная вольтамперометрия. В системах с очень низкой концентрацией металла полярографический ток будет мал, что очень затрудняет измерение потенциала полуволны. Однако если катион металла, осаждаемый в восстановленной форме на электроде, еще раз окислить путем изменения полярности, то ток, соответствующий быстрому повторному окислению всего осажденного металла, будет превышать ток, индуцируемый при обычном полярографическом измерении. Такой подход положен в основу инверсионной вольтамнерометрии [126]. Этот метод применяют для определения низких концентраций иона металла (порядка 10 моль/л). Пиковый потенциал в инверсионной вольтамнерометрии Ер для обратимых систем обычно близок к полярографическому потенциалу полуволны. При комплексообразовании Ер, так же как и потенциал полуволны, смещается в сторону более отрицательных значений. При этом выражение, характеризующее смещение Ер, АЕр как функцию концентрации лиганда, аналогично уравнению (9.35), приведенному выше. [c.168]

    Принцип метода можно пояснить на примере производных пиридина, области восстановления которых приведены на рис. 11 (восстанавливаются заместители, но не само гетерокольцо). Измерив потенциал полуволны неизвестного соединения, можно на основании данных рис. 11 определить круг электроактивных заместителей способных восстанавливаться при данном потенциале. Окончательный выбор следует производить не только на основе значения потенциала полуволны, но и других характеристик полярографической волны (например, числа электронов, участвующих в реакции, зависимости потенциала полуволны от pH, числа волн), которые сравниваются с обычным поведением соответствующих групп, известным для других случаев. Хотя в химии производных бензола такие проблемы встречаются редко, в химии гетероцикли- [c.265]

    Проске [330] определял полярографическим методом свободную серу в продуктах вулканизации каучука. В 1950 г. полярографическое определение серы впервые было использовано М. И- Гербер и А. Д. Шушариной [331], а затем Голлом [332] для анализа бензинов и керосинов. Позднее появились работы других авторов [333—336]. Как видно из приведенного уравнения электродной реакции, восстановление серы должно в значительной степени зависеть от кйслотйости среды. По данным Голла [333], наилучшие результаты получаются при pH раствора в электролизере, равном 6,3. При более низком pH потенциал полуволны свободной серы становится более отрицательным, а при pH 7 волна серы непригодна для аналитических целей. Вероятно, влияние этого фактора не было учтено в предложенном Р. Д. Оболенцевым, Б. В. Айвазовым и А. А. Ра-товской [336] полярографическом методе определения свободной серы на фоне ацетатного буфера в этанольно-бензольном растворе, поскольку они не получили ни в одном случае хорошо выраженной волны серы и вскоре вынуждены были перейти к метанольному раствору пиридингидрохлорида. По свидетельству авторов, в этом случае получаются хорошие обычные полярографические волны и их производные. Однако на осно- [c.35]

    Смеси изомеров. В этом случае очень большую роль играет среда, в которой происходит восстановление. Например, при восстановлении галоидантрахинонов в одних средах галоид образует собственные волны, в других, такие волны отсутствуют. В частности, в спиртах на фоне иодистого тетраэтиламмония могут быть зафиксированы волны, непосредственно связанные с восстановлением галоида (кроме фторантрахинонов), причем значения потенциалов полуволн у а- и р-галоидпроизводных значительно различаются между собой. Эти различия и были положены в основу количественного определения а- и -галоидпроизводных при их совместном присут-ствии . Ни один обычный прямой химический метод не дает возможности проводить такие определения. Значения полярографического потенциала полуволны различных производных антрахинона приведены в табл. 5. [c.191]

    Сущность метода. Полярографическое определение заключается в восстановлении ионов цинка на капельно-ртутном электроде до металлического цинка. В среде NH4 0H и Ш NH4 1 потенциал полуволны при восстановлении цинка, [c.396]

    Наиболее тщательно к корреляции частот ЯКР и данных полярографии подошли Колдуэл и Хакобиан [53]. Они полагают, что для иодсодержащих соединений полярографическое восстановление проходит через две ступени Н — I + е" Т (переходное состояние) медленная стадия Т + е" + Н+ — Н + I кинетическая стадия. Поскольку определяет величину потенциала полуволн стадия переноса электрона и образования Т", которая не зависит от pH электролита, органические иодсодержащие соединения весьма удобны для изучения влияния заместителей на атом йода методом полярографии. Было найдено [53], что потенциалы полуволн восстановления для иодбензолов и иодистых алкилов образуют разные зависимости с частотами ЯКР (рис. 6-14). Это находится в полном согласии с тем, что для иодзамещенных бензола и иодистых алкилов ап (где а — коэффициент переноса О < а < 1 — число электронов, принимающих участие в медленной стадии электрохимического процесса) имеет различные значения 0,56 0,04 и 0,30 0,04 соответственно. В каждой из этих зависимостей была найдена ожидаемая зако- [c.120]

    Для исследования рениевых соединений был применен полярографический метод [44]. На капельном ртутном катоде перренат (в растворе 2—4 н. соляной и хлорной кислоты в качестве несущего электролита) восстанавливается до четырехвалентного рения. В 4 н. хлорной кислоте диффузионный ток проявляется четко и пропорционален концентрации перренат-иона. Потенциал полуволны составляет —0,4 в. В 2 н. соляной кислоте потенциал полуволны равен—0,45 в, а в 4,2 н. кислоте равен—0,31 в. В нейтральных, не буферных растворах хлористого калия наблюдается двойная волна. Первая своим появлением обязана восстановлению ренид-иона [Ве" ], вторая соответствует потенциалу иона водорода. В фосфатных буферных растворах с pH 7 перренат-ион дает волну каталитического происхождения при—1,6 в. [c.38]

    Рассмотрим вопрос о точности определения величин рАГд полярографическим методом. Ошибка в определении Ка связана с рядом факторов 1) с точностью определения потенциала полуволны, 2) с точностью вычисления а/г , 3) с выбором потенциала, при котором сравниваются скорости восстановления ртутьорганических соединений, 4) с влиянием комплексообразователей (в том числе и растворителя) на потенциал полуволны и, наконец, 5) с выбором реперных точек для вычисления эмпирической константы р. Рассмотрим все эти факторы по очереди. [c.42]

    Ценная информация была получена Хелламом и Драшелом [90, 92] при полярографическом анализе суспензий саж в диметилформамиде с использованием иодида тетра-н-бутиламмония в качестве вспомогательного электролита. На полярограмме были получены отчетливые волны. Из величины потенциала полуволны (между —0,6 и —0,3 в) был сделан вывод о присутствии хинонов. Восстановление оказалось двухэлектронным процессом. Полное исчезновение волн происходит при обработке образца алюмогидридом лития или магнийиодметилом. Аналогично методом анодной полярографии были обнаружены гидрохиноны. Эта волна исчезает после обработки перекисью водорода или диазометаном. [c.212]

    Электрометрические методы — потенциометрия и полярография. Первые позволяют определить активности, а при постоянстве ионной силы — и концентрации веществ, участвующих в окислительно-восстановительном процессе, который протекает в гальваническом элементе. Применение полярографического метода к изучению комплексообразования теоретически обосновано Гейровским и Иль-ковичем [14], которые показали, что потенциал полуволны при обратимом восстановлении определенным образом зависит от концентрации комплексообразователя. Общие и ступенчатые ко11Станты устойчивости можно найти по значениям потенциала полуволны при переменных концентрациях лиганда, например с помощью функций Ледена [15, 16]. [c.45]


Смотреть страницы где упоминается термин Полярографический метод потенциал полуволны восстановления: [c.132]    [c.511]    [c.132]    [c.12]    [c.9]    [c.118]    [c.288]    [c.403]    [c.63]    [c.608]    [c.109]   
Аналитическая химия лития (1975) -- [ c.98 ]




ПОИСК





Смотрите так же термины и статьи:

Метод полярографический

Метод потенциале

Потенциал восстановления

Потенциал полуволны



© 2024 chem21.info Реклама на сайте