Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Комплексы фторидные

    Опыт 15. Сравнение устойчивости роданидного, фторидного, фосфатного и цианидного комплексов железа (III). [c.151]

    Как это объяснить Каков состав фторидного комплекса железа (П1)  [c.281]

    Некоторые соединения проявляют амфотерность в среде жидкого НР. К их числу относятся фториды алюминия и хрОма, Например, фторид хрома может образовать фторидный комплекс, проявляя кислотные свойства  [c.275]


    Электрод фторидный ЭР-У1 рассчитан для работы в качестве индикаторного в паре с вспомогательным хлорсеребряным электродом в комплексе с высокоомным измерительным преобразователем типа рН-340, рН-121 и др. В качестве мембраны в электроде используют тонкую пластинку монокристалла фторида лантана с добавкой солей европия. [c.121]

    Эти величины намного (на несколько порядков) ниже, чем для соответствующих аммиакатов, фториДных и других комплексов. [c.408]

Рис. 40. Записимость константы скорости гидролиза грег-бутилфторида под действием ионов металлов от константы равнооесня образования фторидных комплексов мегаллов (по данным И. В. Кожевникова и Е. С. Рудакова) Рис. 40. Записимость <a href="/info/3323">константы скорости</a> гидролиза грег-<a href="/info/482310">бутилфторида</a> под <a href="/info/945710">действием ионов</a> металлов от константы равнооесня <a href="/info/859782">образования фторидных комплексов</a> мегаллов (по данным И. В. Кожевникова и Е. С. Рудакова)
    Рассмотрим теперь примеры полуреакций и общих реакций для расчетов термодинамических констант устойчивости комплексов. Индекс при обозначении константы устойчивости комплексов (Рр) характеризует координационное число комплекса. Фторидный ко м п л екс А1 . [c.88]

    Фторид-ион в водных растворам бесцветен, гидролизуется, способен к образованию многочисленных устойчивых фторидных комплексов различных металлов, не окисляется в обычных условиях. [c.448]

    Все ионселективные электроды основаны на принципе полупрони-цаемости мембран. Так, в кальциевом ионселективном электроде используется жидкая мембрана, содержащая 0,1 М раствор кальциевой соли дидецилфосфорной кислоты в диоктилфенилфосфонате. Эфиры фосфорной кислоты выбраны потому, что фосфатные и полифосфатные ионы образуют с ионами кальция прочные комплексы. Таким образом, мембрана оказывается проницаемой преимущественно для ионов Са +. Во фтор идиом ионселективном электроде использована мембрана из монокристалла фторида лантана, который при комнатной температуре обладает чистой фторидной проводимостью. Особый интерес вызывают ионселективные электроды, действие которых основано на связывании катионов нейтральными макроциклическими молекулами, например молекулами антибиотиков (валиномицин) или полиэфиров. Применение ионселективных электродов не позволяет определить активности отдельных ионов, поскольку в каждом случае необходимо составлять цепь из ионселективного электрода и некоторого электрода сравнения [c.137]


    Из других методов, основанных на образовании комплексных соеди нений, можно назвать титрование меди или никеля раствором цианистого калия, методы, основанные на образовании фторидных комплексов и др. [c.273]

    Применение уксусной кислоты не обязательно во многих прописях рекомендуется брать серную кислоту. Однако при недостаточном опыте работающего при этом иногда создается слишком высокая кислотность, в связи с чем может выделиться йод. Это объясняется действием пятивалентного мышьяка, а также трехвалентного железа, так как фторидный комплекс последнего разрушается сильными кислотами. Отсюда требование ГОСТа — применять именно уксусную кислоту. Возможно также каталитическое действие меди, и особенно окислов азота на реакцию между йодидом и кислородом воздуха. Поэтому следует обратить особое внимание на указанные в тексте предосторожности в отношении удаления азотной кислоты и окислов азота, а также, по возможности, на устранение соприкосновения с кислородом воздуха после прибавления йодистого калия. [c.414]

    Следует отметить, что если для галлия наиболее прочными являются фторидные комплексы, то для индия и таллия — хлоридные и бромидные. [c.178]

    Третья группа. Косвенный метод определения хлора, брома и иода в растворах основан на способности ртути(II) образовывать устойчивые галогенидные комплексы. Фторидные комплексы ртути(II) недостаточно устойчивы, поэтому метод не может быть использован для определения фторид-ионов. В анализируемый раствор вводят избыток ртути(II), пропускают раствор через колонку с катиояитом КУ-2Х8 в Н-форме и в фильтрате определяют атомно-абсорбционным методом содержание ртути, которое эквивалентно содержанию галогенид-ионов. Нижняя граница определения хлора, брома и иода составляет 0,02 0,05 и 0,07 мкг/мл соответственно [369]. [c.261]

    Методы экстрагирования интенсивно развиваются. Общее представление о возможностях применения экстрагирования в анализе можно получить из таблицы, приведенной ниже. В первом столбце названы металлы, для которых описано экстрагирование тем или другим растворителем комплексообразователь, связывающий металл в экстрагируемое соединение, показан в верхней горизонтальной строке. Краткие обозначения комплексообразователей (их иногда также называют собственно экстрагентами) следующие Ф — фторидные комплексы X — хлоридные Б — бромидные Й — йодидные Р — роданидные Н — нитратные (обычно экстрагируются только в ирисутстзии сложных органических оснований, как трибутилфосфат) ГП — гетерополикислоты ДЗ — дитизонаты ДЭТК — диэтилдитиокарбаминаты ЭК — этилксантогенаты КФ — купферонаты ОХ — оксихинолинаты ДМГ — диметилглиоксиматы МФ — [c.116]

    В этом случае одной каплей раствора HjOj их окисляют в ионы Ре а последние связывают в виде фторидного комплекса [PePgp добавлением 1—2 кристаллов NaP. [c.271]

    Примером индикаторного титрования может быть определение алюминия, основанное на образовании фторидных комплексов с использованием в качестве индикатора соли трехвалентного железа. При титровании до точки эквивалентности образуется комплексный ион [А1РбР , как более стойкое соединение, а после точки эквивалентности — ион [РеРбР с уменьшением концентрации ионов Ре +. Здесь индикаторной реакцией является реакция восстановления железа [c.239]

    Образовавшийся плохо растворимый фторидный комплекс безводен — характерное для Ве(П) КЧ=4 достигается за счет ионов F , заполняющих координационную сферу Ве(И). Термолизом тетрафто-робериллата аммония получают безводный фторид бериллия, который, как упоминалось, служит исходным веществом для магннй-термического и электролитического получения металлического бериллия  [c.36]

    Для катионов класса Б чрезвычайно характерны прочные хло-ридные (а не фторидные, как у катионов класса А) комплексы. Благородные металлы (Аи, Р1) не растворяются в азотной кислоте, но растворимы в смеси соляной и азст1юй кислот (царской водке) благодаря образованию хлоридных комплексов АиСЬ и Р1С1б.  [c.63]

    Диамагнитность комплекса [Со(ЫНз)б] объясняется тем, что в нем поле лигандов велико по сравнению с фторидным комплексом и вопреки правилу Хунда образуется низкоспиновая конфигурация (Ug) ( g)°, не имеющая неспаренных спинов. [c.383]

    I группе элементы главной подгруппы почти не обладают способностью к комплексообразованию в отличие от подгруппы меди, то в IV группе, несмотря на значительное различие в химических свойствах между главной и побочной подгруппами, различие в комплексных соединениях этих элементов сравнительно невелико и в большинстве случаев они дают однотипные соединения. К ним в первую очередь следует отнести многочисленные комплексные галогениды типа Мег[ЭлРб]. Наиболее прочны фториды. С увеличением атомной массы, т. е. в ряду Ме2[Т1Рб] — Ме2[ТНРб], устойчивость фторидных комплексов падает. [c.394]

    V группа. Образование комплексных соединений особенно характерно для элементов подгруппы ванадия, и наиболее типичны фторидные комплексы состава Ме[ЭлРб], например K[Vp6], К[ТаРб]. [c.394]

    Для нахождения скачка кривой титрования можно использовать то, что алюминий (И1), цирконий (IV) и торий (IV) в водных растворах сильно протолизируются и растворы имеют кислую реакцию. Фторидные комплексы, которые образуются в ходе титрования, кислой реакции не вызывают, поэтому при титровании кислый раствор переходит в нейтраль]1ый и можно пользоваться индикаторами pH, например метиловым оранжевым. Если тигруют ионы циркония или тория, скачок можно найти также с помощью интенсивно окрашенных ализаринсульфатных комплексов (с цирконием— красно-фиолетовые, с торием — фиолетовые). В пределах скачка эти комплексы разрушаются и образуются более прочные бесцв,етные фторидные комплексы. [c.208]


    Поскольку катион Се + обладает большим значением удельного заряда, его комплексообразовательная способность несколько выше других лантаноидов в степени окисления +4. При этом высшая степень окисления более стабильна по сравнению с соединениями первого порядка. Так, для Се (+4) известны довольно устойчивые комплексы [Се(С204)з1 и [Се(МОз)б1 Из галогенидных комплексов наиболее устойчивы фторидные [SPJ (Се и Рг), [ЭР,] (Се, Рг, ТЬ), а для диспрозия известен только sjfDyP -]. [c.177]

    Фторидные комплексы такого типа неизвестны. Близко к галоге-нидным комплексам примыкают цианидные, которые особенно устойчивы для платины (для [Р1(СК)4]"- рЛ нсст 41). Для рутения и осмия в цианидных комплексах характерно к. ч. 6 К4ГЭ(СМ)в]. Известны и соответствующие кислоты Н4[Э(СК)в], представляющие собой бесцветные кристаллические вещества. Для платиноидов в степени окисления +2 известны роданидные (На[Р1 (СК5)4], Р- нест 28), оксалатные [3(0204)2] и комплексы с более сложными органическими лигандами. [c.424]

    Комплексные производные, отвечающие степени окисления 4-5, менее разнообразны. Известны лишь фторидные комплексы [ЭРи1 для всех платиноидов, кроме палладия. Р1(-Ь5) образует [c.425]

    Значение константы равновесия (4,1 10 ) достаточно большое, поэтому равновесие практически полностью сдвинуто вправо — в Topoity образования фторидного комплекса железа(1П), т. е. тио1щанатный комплекс практически разрушается. [c.209]

    Ион кобальта Со этих условияк не образует прочных фторидных комплексов. [c.209]

    Открытие фторид-иона. Фторид-ион обнаруживают по обесцвечиванию красного раствора тиоцианатных комплексов железа(Ш), которые разрушаются в присутствии фторид-1юнов с образованием устойчгаого бесцветного фторидного комплекса железа(1П) [FeFe] " (см. выше Аналитические реакции фторид-иона F ). [c.489]

    Соединения с галогенами. К галогенидам циркония и гафния относятся соединения различных типов — тетрагалогениды, продукты присоединения к ним, продукты замещения, галогеноцирконаты и гало геногафнаты, галогениды низших степеней окисления. Фториды весьма существенно отличаются от других галогенидов хлориды, бромиды и иодиды сходны между собой. Отличия фторидов обусловлены большой прочностью связей 2г — Р и НГ — Р, устойчивых в присутствии воды. В водных растворах существуют в зависимости от кислотности и концентрации ионов Р комплекс 1ые ионы [МеР ] " (где = 1 Ч- 6). Поэтому из них даже при низкой кислотности выделяются фторидные соединения, не содержащие гидроксо- и оксогрупп. Из-за малых размеров и низкой поляризуемости иона Р координационное число во фторидных соединениях циркония и гафния достигает 8, в остальных галогенидах оно не превышает 6. Соединения циркония и гафния со фтором имеют более высокие температуры плавления и сублимации, менее гигроскопичны, чем хлориды, бромиды и иодиды. В противоположность последним не известны фториды циркония и гафния низших степеней окисления [12, 151. [c.291]

    Специфичность реакции можно повысить путем маскировки сопутствующих ионов. Маскировка заключается в связывании мешающих ионов в достаточно прочные комплексы добавлением в раствор соответствующих веществ. Например, медь и свинец можно маскировать, переведя их в тартраты в таком растворе можно обнаружить те ионы, которые не образуют тартратные комплексы. Маскировка мешающих ионов часто используется и имеет большое практическое значение. Например, если в ходе анализа катионов 4-й группы к раствору, содержащему медь, кадмий, висмут, свинец, прибавить глицерин, с которым все катионы, кроме кадмия, образуют прочные комплексы, не осаждаемые щелочами, а затем подействовать гидроокисью натрия, то кадмий оседает в виде гидроокиси, а остальные катионы останутся в растЕоре и могут быть затем обнаружены. Ион Ре " мешает обнаружению Со + в виде синего роданидного комплекса, так как образует темно-красный комплекс ( 81, 82), что мешает определению кобальта. Если же железо предварительно перевести во фторидный комплекс 1РеРйР или [РеРа]-, добавляя фторид натрия, то оно не помешает определению кобальта, так как комплекс железа с фторид-ионами значительно устойчивее, чем железороданидный комплекс. Кадмий можно осадить в виде желтого сульфида в присутствии меди (И), связывая медь в цианидный комплекс [Си (СЫ) , более прочный, чем цианид-ный комплекс кадмия. /Снест для комплекса кадмия 1,4-10" , а для комплекса меди (I) 5-10 , т. е. значительно меньше. [c.100]

    Во фторидометрии используют способность ионов некоторых металлов образовывать прочные фторидные комплексы. Фторидометрически чаще всего определяют ионы алюминия, циркония, тория и кальция. При титровании раствором фторида натрия первых трех ионов протекают следующие реакции  [c.207]


Смотреть страницы где упоминается термин Комплексы фторидные: [c.278]    [c.278]    [c.373]    [c.424]    [c.293]    [c.335]    [c.84]    [c.85]    [c.46]    [c.107]    [c.64]    [c.475]    [c.498]    [c.189]    [c.237]    [c.226]   
Аналитическая химия. Кн.2 (1990) -- [ c.0 ]

Методы аналитической химии Часть 2 (0) -- [ c.34 ]

Методы аналитической химии - количественный анализ неорганических соединений (1965) -- [ c.35 ]




ПОИСК





Смотрите так же термины и статьи:

Сравнительная устойчивость роданидного и фторидного комплексов железа

Тантал фторидных комплексов

Фторидные комплексы с алюминие

Фторидные комплексы, образовани

Фторидные комплексы, поглощение анионитами

Фторидный ИСЭ



© 2025 chem21.info Реклама на сайте