Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Комплекс. также Координационные соединения стабильные

    Описание амин-боранов не будет ограничиваться продуктами присоединения простых азотных оснований и молекул-акцепторов ВКз. Вследствие различной степени стабильности, присущей основной амин-бора-новой системе, по-видимому, целесообразно также рассмотреть координационные соединения, получающиеся в результате координации свободной электронной пары атома азота с молекулой ВНз. Следовательно, будут обсуждены также борановые комплексы с нитрилами, амидами и родственными им соединениями в том случае, если будет надежно подтверждено образование дативной бор-азотной связи в этих комплексах. [c.23]


    В этом плане сделано немало., Но это, конечно, только начало. Имеются указания на существование десятков форм и разновидностей хемосорбционных связей и структур, возникающих при хемосорбции. Здесь и нормальные ковалентные ост- и ос -связи и ионные связи, одно-электронные и водородные связи, донорно-акцепторные, дативные и т. д. Наряду с атомами и группами, прикрепленными к атомам и ионам поверхности, наподобие атомов и групп в стабильных молекулах, существуют аналоги различных связей лигандов в координационных соединениях и в кристаллах. Существуют и действуют карбониевые ионы, я-комплексы, сложные ассоциативные комплексы и соединения внедрения и т. д. Химия поверхностных двумерных соединений, вероятно, богаче химии молекул или химии кристаллов. Многообразие форм определяется, с одной стороны, возможностью, наряду с хемосорбцией на различных нормальных структурных элементах твердого тела, также хемосорбции на различных дефектах поверхности — вакансиях, атомах примесей, выходах дислокации и т. д., а с другой стороны, стабилизацией структур и форм, маловероятных для свободных молекул. В частности, это относится к различным нейтральным и ионо-радикальным формам с неспаренными электронами. Можно думать и о стабилизации с увеличением времени жизни переходных комплексов. [c.7]

    Известны также системы, в которых роль иона металла состоит в сортировке различных продуктов сложных, но обратимых реакций и в накоплении за счет комплексообразования продукта, образующего с ним наиболее стабильный полидентатный координационный комплекс, направляя тем самым реакцию на образование последнего (реакция термодинамического шаблона). Многие примеры включают образование оснований Шиффа из полифункциональных карбонильных соединений и аминов — реакций, которые могут приводить к набору нежелательных циклических или полимерных продуктов в отсутствие шаблона — иона металла. Эти системы часто образуют комплексные основания Шиффа, которые в отсутствие иона металла целиком гидролизу ются до исходных реагентов. Примером могут служить синтезы макроциклов (2.130) [589,590] и (2.131) [197] последний вклю- [c.428]

    Соли серебра, а также соли меди(1) и ртути(II) и в твердом состоянии, и в водном растворе образуют комплексы с ал-кенами [13], Большое число твердых соединений серебряных солей, часто с резкой температурой плавления, получено при характеристике новых типов ненасыщенных веществ. Синтезировано также много твердых аддуктов ненасыщенных соединений, особенно диенов, с галогенидами Pt(lI), Рс1(П),Р11(1) пионами родственных металлов. Известно, что диены реагируют с карбонилами металлов, образуя стабильные твердые аддукты [14]. Действительно, во многих случаях координационные силы [c.13]


    Из этого краткого обзора мы видим, что аммиакаты. MX - NHj с /г большим, чем координационное число. М, должны, повидимому, встречаться редко и что п обычно равна 4 или 6 в зависимости от природы металла М. В этих аммиакатах молекулы NHg ( бра.чуют группу около атома М, причем такие группы M(NHg) часто дают вместе с анионами простые кристаллические структуры. Связь NH с М в аммиакатах более электроположительных элементов, как алюминий и магний, по своей природе в основном электростатическая. Это также установлено для Ni и Си измерениями магнитных моментов этих комплексов. Стабильность таких соединений сильно отличается 28  [c.435]

    Установленные закономерности в ряде случаев позволяют предвидеть стабильность намеченных к синтезу новых координационных соединений. Как известно, устойчивость комплексов в обшем зависит от природы металлоиона и природы лиганда, но за этим скрывается целый ряд факторов, оказывающих влияние на прочность образующегося соединения. Так, например, большое значение имеет электроно-донорная и электроноакцепторная характеристика составных частей комплекса и связанная с ней степень полярности связи. Решающая роль принадлежит также характеру образующейся координационной связи (ионная или ковалентная связь). Известно влияние на стабильность и образование соединения циклообразования, наличия кратных связей, стерических факторов и т. д. [c.5]

    К4[Ре(СК)в], Кз[Ре(СМ)в]. Дело в том, что практически все лиганды (в том числе Н2О и МНз) в комплексах с катионами триады железа создают недостаточно сильное кристаллическое поле, в котором энергия расщепления меньше энергии спаривания . Соответствующие высокоспиновые комплексы сравнительно малоустойчивы (внешняя 5/ -гибридизация). Лишь лиганды С , возглавляющие спектрохимический ряд , образуют низкоспиновые комплексы с внутренней а 5/7 -гибридизацией, устойчивость которых весьма высока. Так, [Ре(СМ)б] " имеет рЛ сст 36, а [Pe( N)e] — р/Сн сг 44. Этот пример показывает, в частности, что с увеличением степени окисления комплексообразователя (при сохранении координационного числа) параметр расщепления увеличивается и растет устойчивость комплекса, так как один и тот же лиганд создает более сильное кристаллическое поле. Именно поэтому амминокомп-лекс [Со(МНз)о1 значительно стабильнее (р-/( ,,ст 39), чем [ o(NHз)вJ-+ (р-Л сст 6), и в отличие от последнего является диамагнитным . Отсюда следует также вывод о том, что в комплексных соединениях устойчивость степени окисления +3 для кобальта существенно возрастает и становится наиболее характерной для этого элемента. [c.410]

    Краун-полиэфиры образуют стабильные комплексы с катионами непереходных и переходных металлов. Стабильность этих компяексов зависит от соответствия диаметра катиона размеру полости кольца, а также от координационного числа катиона металла. Катион лития с диаметром иона 1,20 А образует стабильный комплекс с 12-краун-4-полиэфиром с диаметром полости кольца 1,2-1,5 А катион натрия ( /=1,9 А) дает наиболее стабильный комплекс с 15-краун-5 ( /= 1,7-2,2 А), катион калия ( /=2,66 А) — с 18-краун-6 ( / = 2,6-3,2 А). Катион цезия с d= 3,38 А образует прочный комплекс с 24-краун-8-полиэфиром с диаметром полости кольца порядка 4 А. Комплексообразование краун-полиэфиров, их сернистых и азотных аналогов, а также полициклических краун-соединений — так называемых криптандов — с катионами металлов составляет интересный самостоятельный раздел современной аналитической химии  [c.298]

    Гидриды и алкильные производные элементов V группы являются основаниями Льюиса это вытекает из 1) их способности присоединять протон или какую-либо алкильную группу с образованием ониевой соли 2) стабильности аддуктов, которые они образуют с акцепторными молекулами, например галогенидами бора, и 3) лёгкости образования и устойчивости комплексов с галогенидами переходных металлов, например с хлоридом платины (II). Можно было бы рассмотреть и другие свойства, однако достаточные сведения имеются лишь относительно перфторалкильных производных. Что касается гидридов и их алкильных производных, то существуют достаточно полные сведения показывающие, что стабильность их ониевых солей и молекулярных соединений быстро уменьшается в зависимости от природы центрального атома в следующем порядке N > Р > Аз > ЗЬ. Таков порядок и в случае а-связей, если же есть еще и я-связь, то порядок, очевидно несколько иной N < Р > Аз > 5Ь. Галогениды азота, фосфора, мышьяка и сурьмы, разумеется, не образуют ониевых солей. Действительно, чем ниже в группе расположен элемент, тем сильнее его кислоты Льюиса и тем выше их способность образовывать анионы типа 5ЬС1б. Однако некоторые галогениды могут давать аддукты с сильными акцепторами (например, РзР ВНз) известно также значительное количество их комплексов с переходными металлами, например никелем и платиной. Это означает, что замена алкильных групп или водорода электроотрицательными атомами галогенов сильно уменьшает донорные свойства элементов V группы, к которым они присоединены. В то же время ослабление координационной а-связи до некоторой степени может возмещаться большей способностью к образованию п-связей там, где это возможно, так как под влиянием электроотрицательных галогенов электроны будут оттягиваться к атому элемента V группы. Это подтверждается тем, что в противоположность устойчивому (РзР)2Р1С12 соединение РзР-ВРз не существует. Следовательно, можно заранее предсказать, что перфторалкильная группа с ее высокой электроотрицательностью также должна значительно уменьшать донорные свойства элементов [c.55]


    Одновременно с этим решались и проблемы строения, реакционной способности и свойств фторкремнийорганических соединений, в состав которых входят столь разные по природе элементы, как фтор и кремний. Среди этих проблем необходимо выделить вопросы, связанные с выяснением природы связи кремния со фтором, роли полярного и стерического эффектов, координационной ненасыщенности кремния и — -взаимодействий в электро-фильных, нуклеофильных и радикальных превращениях фторкремнийорганических соединений, вопросы строения стабильных и нестабильных активированных (переходное состояние) комплексов, а также механизма образования и превраш,ений фторкремнийорганических соединений. В частности, было четко установлено, что кремний слабее передает индуктивный эффект атомов фтора, чем углерод. Передача индуктивного эффекта по цепи происходит с затуханием и альтернированием величины заряда. Взаимодействия рл — -тина в связях 81—Р проявляются не столь четко. На этот факт пока нет единой точки зрения. Вместе с тем участие вакантных Зй-орбиталей кремния в образовании стабильных до-норно-акцепторных связей получило новое подтверждение в синтезе комплексов органофторсиланов с фтор-анионом (Мюллер и Датэ) и силатранов (Воронков). В связи с химическими (Наметкин и др.), масс-спектрометрическими (Андрианов, Бочкарев и др.) и оптическими (Нефедов, Мальцев и др.) данными вновь возникла проблема существования кратных связей кремния с углеродом и другими элементами, без чего трудно объяснить ряд превращений органических соединений кремния при высоких и низких температурах, электронном ударе и других воздействиях. [c.6]


Смотреть страницы где упоминается термин Комплекс. также Координационные соединения стабильные: [c.448]    [c.448]    [c.145]    [c.130]    [c.600]    [c.178]    [c.202]    [c.435]    [c.224]    [c.247]    [c.435]    [c.119]    [c.63]    [c.217]    [c.11]   
Теоретическая неорганическая химия Издание 3 (1976) -- [ c.379 ]




ПОИСК





Смотрите так же термины и статьи:

Комплекс. также Координационные соединения

Комплексы координационные

Комплексы стабильные

Координационные соединени

Соединения координационные

Стабильность соединений

также Комплексы



© 2025 chem21.info Реклама на сайте