Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цирконий коррозионная стойкость

Рис. 68. Коррозионная стойкость сплавов ниобия с танталом, титаном, цирконием и молибденом в кипящей Н, 30 Рис. 68. <a href="/info/110028">Коррозионная стойкость сплавов</a> ниобия с танталом, титаном, цирконием и молибденом в кипящей Н, 30

    Цирконий - конструкционный материал для ядерных реакторов. Это обусловлено его высокой прочностью, коррозионной стойкостью и очень малым сечением захвата нейтронов. Гафний, обычно сопутствующий цирконию, наоборот, весьма активно поглощает нейтроны, поэтому необходима глубокая очистка циркония от гафния, что представляет трудную задачу. [c.495]

    БОРИДЫ — соединения бора с металлами образуются при высоких температурах. Имеют повышенную твердость. Стойкость против истирания и коррозионную стойкость. 5. никеля используют как катализатор. Б. хрома, циркония, Титана, ниобия и тантала, благодаря их тугоплавкости, применяют для изготовления деталей реактивных двигателей, лопаток газовых турбин и др. Б. лантана, церия и бария используют в электронных приборах. Поверхностным борированием резко повышается твердость, стойкость к срабатыванию и коррозионная стойкость изделий из стали, молибдена, вольфрама и др. [c.46]

    Титан немного тяжелее алюминия, но в три раза прочнее его к тому же титан и его сплавы обладают высокой коррозионной стойкостью, жаростойкостью. Они используются в качестве конструкционного материала в самолетостроении, ракетной технике и т. д. Этим требованиям отвечают также легкие магний-циркониевые сплавы. Цирконий почти не захватывает тепловые нейтроны, поэтому он используется в качестве конструкционного материала для атомных реакторов. Использование циркония в ядерной технике потребовало тщательного разделения циркония и гафния, так как гафний в этом случае является вредной примесью. [c.127]

    Рис, 64, Коррозионная стойкость сплавов ниобия с титаном и танталом (а), ванадием (б), цирконием и молибденом (в) в кипящей НзРО, [52] [c.70]

    Исключительно высокой коррозионной стойкостью обладает цирконий в органических кислотах. [c.290]

    НИЯ С Си, N1, Ве, Ре и Сг, например, 2г —7%, N1 — 7 /о Сг [19] или 2г — 4—5% Ве, позволяют получать соединения с высокой коррозионной стойкостью при недостаточной защите во время пайки вследствие поглощения азота цирконием коррозионная стойкость соединений существенно снижается. [c.288]

    Важной характерной особенностью циркония является его стойкость в соляной кислоте различных концентраций при 100°С. В серной кислоте цирконий устойчив только до концентрации кислоты 80%. Коррозионная стойкость циркония в фосфорной кислоте в сильной степени зависит от температуры. Так, при 38° С скорость коррозии циркония в фосфорной кислоте не превышает 0,13 мм1год при повышении температуры до 100° С цирконий стоек в фосфорной кислоте концентрации до 60% (рис. 197). [c.289]


    Нормальный электродный потенциал циркония —1,53 в (2г = 2т + + Зе). Высокая коррозионная стойкость циркония в растворах электролитов объ- [c.289]

    В расплавленных натрии и калии коррозионная стойкость циркония до 600° С хорошая. [c.290]

    Цирконий в отличие от гафния почти не захватывает медленные (тепловые) нейтроны. Это его свойство в сочетании с высокой коррозионной стойкостью и механической прочностью при повышенных температурах делает чистый, свободный от гафния цирконий одним из главных конструкционных материалов в ядерной энергетике. При очистке природных соединений циркония от примесей НГ ( 2%) последний накапливается, что заставляет в настоящее время искать возможности его использования в технике. Гафний обладает повышенной способностью поглощать тепловые нейтроны. [c.285]

    До сих пор рассматривалась скорость коррозии, лимитируемая катодными реакциями. Однако иногда коррозия может контролироваться и анодными реакциями. Обычно это наблюдается на металлах, способных пассивироваться, таких, как хром, алюминий, титан, цирконий, никель, тантал и др. Пассивностью металла называется состояние его повышенной коррозионной устойчивости, вызванное торможением анодного процесса. Согласно термодинамическим расчетам, пассивный металл может подвергаться коррозии, но практически не корродирует из-за того, что анодное растворение его протекает крайне медленно. Например, стандартные потенциалы алюминия (Еар+/а1 = = —1,66В), циркония (Е г +/2г= —1,54 В), титана (Ет =+/т1 = = —1,63В), хрома (Есг"+/сг = — 0,74 В) значительно отрицательнее потенциалов кислородного и водородного электродов, поэтому можно было бы ожидать, что они будут корродировать как с выделением водорода, так и с поглощением кислорода. Однако они отличаются высокой коррозионной стойкостью благодаря склонности к пассивации. Пассивность в основном вы- [c.233]

    Цирконий и гафний благодаря таким свойствам, как способность захватывать нейтроны, механическая прочность, коррозионная стойкость, применяются в качестве конструкционных материалов для деталей ядерных реакторов. [c.263]

    Сплавы системы Ti — Zr представляют собой однофазный твердый раствор. При содержании Ъ% 7л наблюдается сильное упрочнение сплава при этом пластичность остается высокой. Коррозионная стойкость сплавов титапа с цирконием IS разбавленных растворах НС1, H2SO4 п др. тем выше, чем больше содержится в пих циркония (рис. 194)-Так, в 5%-ном растворе H I прп 60° С скорость коррозии титана в 2 раза выше скорости коррозии его сплава с 5% Zr и в 160 раз выше скорости коррозии сплава с 50% Zr. В 65%-ной HNO3 при 100° С, в концептрироваппой муравьиной кислоте при 40° С коррозионные потери сплава Ti—Zr пс превышают 0,004 г/(л2-ч). [c.286]

    Данные по стойкости тугоплавких металлов в азотной кислоте представлены на рис. 47. Критическая концентрация азотной кислоты для Т1, который совершенно нестоек даже в слабых кипящих растворах серной и соляной кислот, 30%. В азотной кислоте с концентрацией 25% тантал, ниобий и цирконий абсолютно стойки. Если коррозионную стойкость оценивать не по уменьшению массы металла в зависимости от концентрации кислоты, а за критерий коррозионной стойкости принять глубину коррозии 0,25 мм/год, то в этом случае коррозионная стойкость того или иного металла будет характеризоваться одной цифрой — критической концентрацией кислоты. [c.55]

    При сварке металл нагревается до температуры плавления циркония и затем охлаждается с достаточно высокой скоростью. При этом происходит мартенситное превращение с образованием нестабильных а -фазы и пересыщенного твердого раствора ниобия) в а-цирконий. Коррозионная стойкость сварного соединения при этом снижается. Для ее увеличения сварные соединения отжигаются в вакууме при температурах, отвечающих существованию а-циркония. Контроль за коррозионным состоянием сварных соединений осуществляется путем автоклавирования изделий. Браковочным признаком является побеление металла сварного шва и пришовной зоны. [c.220]

    Практический интерес представляют собой сплавы циркония с алюминием и оловом, имеющие а-структуру. Сплавы с алюминием наиболее прочные из всех сплавов циркония, но меньше сопротивляются окислению, чем чистый цирконий. Сплавы с оловом (до 2,5%) и небольшими добавками железа (до 0,25%), хрома, никеля и др.( цир-калой) при хороших механических свойствах обладают очень высокой коррозионной стойкостью [14, 16]. [c.302]

    Титан, цирконий и гафний используются как легирующие добавки к специальным сплавам. Они улучшают механические свойства, повышают пластичность, твердость и коррозионную стойкост 5 сплавов. Порошки титана, циркония и гафния используются как поглотители газов (геттеры). Более легкий по сравнению с другими -металлами титан широко применяется также для изготовления турбинных двигателей, корпусов самолетов и морских судов. Особо чистый цирконий используется в качестве конструкционного материала для термоядерных реакторов. Гафний обладает исключительной способностью к захвату нейтронов стержни из этого металла применяются в ядерной технике. Оксиды циркония, титана и гафния находят применение в качестве материалов дл>1 изготовления тугоплавких и химически стойких тиглей и электродов МГД-генераторов. Ti02 используется в качестве красителя (титановые белила). Из карбидов титана и циркония изготовляют шлифовальные круги. Титанат бария (ВаТЮз) широко исполь.-зуется в пьезоэлектрических датчиках. [c.514]


    При температуре 20—50 - С кислота в парах диссоциирует па НР и и ме таллы подвергаются воздействию фтористого водорода. В концентрированных растворах кислоты при нормальной температуре низкая коррозионная стойкость циркония объясняется присутствием в растворе иопов фтора. Некоторые соли кремневой кислоты используются как ингибиторы коррозии никеля и его сплавов в растворах хлор-новатистонатриевой соли. [c.827]

    Фосфорная кислота является окислителем, поэтому такие металлы, как молибден, никель, цирконий, склонны к пассивации. При нормальной температуре скорость коррозии железа возрастает по мере повышения концентрации кислоты лишь до определенного предела. В концентрированной кислоте иа железе образуется пассивная пленка. При введении п состав стали элементов, хорошо пассивирующихся в кислоте (N1, Мо). их коррозионная стоГг-кость повышается. Высокой коррозионной стойкостью [c.850]

    Титан и его аналоги покрываются на воздухе чрезвычайно прочной защитной пленкой ЭОг. Поэтому при обычной температуре они коррозионноустойчивы в атмосферных условиях и химически устойчивы во многих агрессивных средах. Так, коррозионная стойкость титана превышает стойкость нержавеющей стали. В азотной кислоте Ti, Zr и Hf пассивируются. Цирконий и гафний (титан в меньшей степени) устойчивы в растворах щелочей. Концентрированная НС растворяет при нагревании только титан (образуется Ti la), цирконий и гафний [c.283]

    Титан и его аналоги покрываются на воздухе чрезвычайно прочной защитной пленкой ЭО2. Поэтому при обычной температуре они коррозионно-устойчивы в атмосферных условиях и химически устойчивы во многих агрессивных средах. Так, коррозионная стойкость титана превышает стойкость нержавеющей стали, В азотной кислоте Ti, Zr и Hf пассивируются. Цирконий и гафний (титан в меньшей степени) устойчивы в растворах щелочей. Концентрированная H I растворяет при нагревании только титан (образуется Ti b), цирконий и гафний в соляной кислоте не растворяются. Они растворяются лишь в тех кислотах, с которыми образуют в процессе взаимодействия анионные комплексы . Например, Zr и Hf можно растворить в плавиковой кислоте или в царской водке  [c.316]

    Использование титана, циркония, гафния и их соединений. По коррозионной стойкости даже в морской воде титан превосходит все нержавеющие стали и цветные металлы. Поэтому он и его сплавы находят различное применение в машиностроении, авиа- и судостроении, турбостроении, в производстве вооружения. Добавка 0,1% Т1 резко повышает качество стали. Сталь с добавкой 2г используется в изготовлении броневых плит и щитов, стволов орудий и пр. Эти металлы связы-вакзт азот и кислород, растворенные в стали, что предотвращает образование раковин и сообщает ей однородность. [c.332]

    Анодное оксидирование может быть изучено на различных металлах, лучше всего обнаруживающих эту способность в растворах, не обладающих заметным воздействием на оксидную пленку. Так, алюминий хорошо оксидируется в кислом боратном буферном растворе, титан — в растворах серной кислоты. Цирконий, ванадий, ниобий — металлы, вообще характеризующиеся высокой коррозионной стойкостью во многих средах, соответственно легко оксидируются в кислых, нейтральных и щелочных растворах. Однако введение, например, фтор-ионов резко замедляет процесс формирования оксидной пленки или даже полностью его исключает вследствие образования в качест- [c.237]

    Цирконий и гафний растворяются только в плавиковбй кислоте и кипящей H2SO4. При растворении в плавиковой кислоте выделяется водород. /Кислоты, в том числе и органические, с добавлением фторидов щелочных металлов и аммония растворяют цирконий и гафний, но менее энергично, чем титан. В отличие от титана цирконий стоек к действию соляной кислоты при комнатной и повышенной температуре, но менее устойчив, чем титан, против действия смесей кислот азотной и соляной, азотной и серной, соляной и серной. По коррозионной стойкости цирконий уступает только танталу. Гафний обладает несколько меньшей коррозионной стойкостью по отношению к кислотам. На цирконий не действуют растворы и расплавы щелочей, гафний же не разъедается даже в кипящем растворе едкого натра, содержащем перекись натрия. [c.213]

    По уменьшению эффективной работы пары неравномерной аэрации металлы располагаются в ряд цинк, хром, углеродистая сталь, серый чугун, кадмий, алюминий, медь, свинец, нержавеющая высокохромистая стапь, висмут, цирконий, тантал, титан. Из приведенного перечня следует, что весьма перспективный конструкционный материал для подземных сооружений - это титан, который, помимо высоких механических свойств, малой плотности, обладает также хорошими коррозионными характеристиками высокой общей коррозионной стойкостью и высокой устойчивостью к иону хлора, а также низкой чувствительностью к образованию пар дифференциальной аэрации. Из приведенных данных можно также сделать предположение о целесообразности применения циркония в качестве защитного покрытия на стальных изделиях в почвенных условиях. [c.48]

    Цирконий — серебристо-серый тугоплавкий металл (т. пл. 1852 °С), обладает весьма высокой коррозионной стойкостью. Впервые получен в 1824 г. восстановлением фторцирконата калия KaZrFe металлическим натрием. Чистый ковкий цирконий удалось получить лишь сто лет спустя путем термической диссоциации Zrli. Промышленное производство циркония возникло в начале 50-х годов в связи с возросшими потребностями в новых конструкционных материалах. [c.507]

    Цирконий близок к титану по химическим свойствам. Однако цирконий значительно дороже титана и менее пластичен (технологичен), поэтому его коррозионная стойкость важна в тех случаях, когда можно использовать и другие его свойства (например, в атомной энергетике). Цирконий имеет хорошую стойкость в восстановительных средах (коррозионностоек в соляной кислоте любых концентраций при комнатной температуре, а до 20%-ной концентрации — также и при температуре кипения), однако в окислительных средах цирконий стоек лишь в присутствии ионов хлора. [c.52]

    С целью повышения жаропрочности молибдена разработаны различные сплавы. С точки зрения обычных представлений эти сштавы являются микролегированными углеродом, цирконием и титаном. Указанные элементы, образуя дисперсную вторую фазу (карбиды), значительно повышают жаропрочные свойства молибдена, однако микролегирование мало влияет на коррозионную стойкость (показано ниже). Изменение корро-зиошой стойкости достигается при глубоком легировании. Для молибдена такое легирование нецелесообразно, так как, по-видимому, оно должно приводить к ухудшению его технологических свойств. Кроме того, и нелегированный молибден обладает высокой коррозионной стойкостью в концентрированных кислотах — практически на уровне тантала. [c.86]

    Покрытия из металлов п сплавов используют в качестве антикоррозионных (хром, никель, нихром), жаростойких (ниобий, мо либден), жароэрозионностойких (вольфрам). Хромоникелевые само-флюсующиеся сплавы обладают износостойкостью, эрозионной и коррозионной стойкостью, стойкостью к окислению при высокой температуре. Оксиды (оксид алминия, оксид хрома, диоксиды циркония или титана) применяют как теплозащитные покрытия, обладающие высокой жаро- и коррозионной стойкостью, твердостью. Бориды различных металлов имеют высокую твердость и хорошую жаростойкость, силициды — высокую термо- и жаростойкость. Карбиды металлов в большинстве случаев характеризуются высокой твердостью, износо- и жаростойкостью нитриды титана, циркония, гафния — высокой твердостью, износо- и термостойкостью, устойчивостью к коррозии. [c.139]

    Применению циркония в первое время препятствовали его высокая стоимость и недостаточная /коррозионная стойкость В воде и водяном паре, особенно при температурах выше 400° С. Коррозионную стойкость удалось повысить получением циркония,овободно-го от вредных примесей (углерода, титана и алюминия), а также легированием циркония элементами, ослабляющими влияние особенно вредных примесей (никелем и железом). [c.46]


Смотреть страницы где упоминается термин Цирконий коррозионная стойкость: [c.256]    [c.65]    [c.277]    [c.290]    [c.290]    [c.827]    [c.842]    [c.859]    [c.381]    [c.365]    [c.412]    [c.189]    [c.74]    [c.75]    [c.68]   
Аналитическая химия циркония и гафния (1965) -- [ c.8 ]




ПОИСК





Смотрите так же термины и статьи:

Коррозионная стойкость



© 2025 chem21.info Реклама на сайте