Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Титан взаимодействие с металлам

    Ванадий, ниобий и тантал между собой и с металлами, близко расположенными к ним Q периодической системе (подгрупп железа, титан,1 и хрома), образуют металлические твердые растворы. По мере /величения различий в электронно.м строении взаимодействую- [c.541]

    Молекулярный азот — химически малоактивное вещество. При комнатной температуре он взаимодействует лишь с литием и щелочноземельными металлами. Малая активность азота объясняется большой прочностью его молекул, обусловливающей высокую энергию активации реакций, протекающих с участием азота. Однако при нагревании он начинает реагировать со многими метал.ла-ми — с магнием, титаном и др. С водородом азот вступает во взаимодействие при высоких температуре и давлении в присутствии катализатора. Реакция азота с кислородом начинается при 3000—4000 °С. [c.428]


    При обычной температуре по отношению к азоту титан, цирконий и гафний вполне устойчивы, однако при высоких температурах проявляют исключительную способность реагировать с ним. Достаточно заметить, что титан и цирконий способны гореть в атмосфере азота. Особенно бурно взаимодействуют с азотом расплавленные титан, цирконий и гафний. В результате взаимодействия металлов с азотом образуются нитриды [c.80]

    Рассмотренным условием образования твердых растворов в особой степени удовлетворяют переходные металлы, способные давать непрерывные твердые растворы как в пределах групп (Т1—2г— НГ, V—ЫЬ—Та, Сг—МО—Ш и т. д.), так и при взаимодействии металлов близко расположенных групп (Т1—V, Т1—Сг, 2г—N5, ЫЬ— Мо, ЫЬ—Ш и т. д.). По мере увеличения различия металлохимических свойств растворимость металлов друг в друге будет падать. Для примера приведем значения растворимости металлов IV периода в титане  [c.378]

    Взаимодействие металлов с азотом протекает более медленно и при более высокой температуре. Так, цирконий реагирует с ним выше 900°. Коррозия циркония при этих температурах протекает быстрее в воздушной атмосфере, чем в атмосфере чистого кислорода или азота. Можно предполагать, что образующаяся в этом случае окисно-нитридная пленка имеет дефектную структуру с кислородными вакансиями, вследствие чего облегчается диффузия кислорода. При нагревании на воздухе гафний ведет себя так же, как и цирконий, однако скорость проникновения кислорода в гафний ниже, чем в цирконий. При 1200° компактный титан загорается на воздухе и в атмосфере азота. Это характерно только для немногих элементов. Стружка и порошки титана, циркония и гафния более активны, чем компактные металлы, обладают пирофорными свойствами, легко загораются. При горении порошков циркония развивается исключительно высокая температура. Циркониевая пыль с размерами частиц менее 10 мкм способна на воздухе взрываться. [c.212]

    Характер взаимодействия металлов с парами воды определяется температурой выше 800° образуются двуокиси и выделяется водород, ниже 800° взаимодействие сопровождается образованием окислов и гидридов. При действии галогенов образуются, как правило, тетрагалогениды. Активность галогенов по отношению к титану, цирконию и гафнию уменьшается с возрастанием атомного номера галогена. С фтором они реагируют при комнатной температуре, а с хлором реакция начинается при 200—400°. [c.212]


    Характер взаимодействия титана и его аналогов с металлами зависит от положения последних в периодической системе. Так, с близкими к нему по свойствам хромом и ванадием титан образует непрерывный ряд твердых растворов замещения  [c.532]

    При сварке титан взаимодействует с кислородом и азотом. Поэтому электродуговая сварка титана должна производиться в среде защитных газов. Обычно применяется вакуумная или аргонно-дуговая сварка. Сварной шов имеет 90% устойчивости относительно основного металла. При температурах выше 500°С поверхностный слой титана становится проницаемым для кислорода, поэтому титан необходимо эксплуатировать при температурах, не превышающих 350°С. [c.150]

    В книге Комплексные металлорганические кач тализаторы рассматриваются способы, получения таких компонентов каталитических комплексов, как алюминийалкилы, трех- и четыреххлористый титан, ацетилацетонаты металлов и т. п. Подробно разбираются реакции взаимодействия металлалкилов с солями переходных металлов. Отдельно рассматриваются методы анализа компонентов каталитических комплексов, а также методы работы с данными соединениями. [c.2]

    Элементы подгруппы титана являются типичными металлами, имеющими вид стали. В обычных условиях они вполне устойчивы по отношению к воздуху и воде. Титан взаимодействует с соляной, серной и азотной кислотами цирконий и гафний растворяются только в плавиковой кислоте или царской водке. [c.283]

    При обычной температуре по отношению к азоту титан вполне устойчив, однако при высоки температурах легко вступает в реакцию с азотом —он является одним из немногих металлов, способных гореть в атмосфере азота. Особенно бурно взаимодействует с азотом расплавленный титан. В результате взаимодействия титана с азотом образуются нитрид и ряд тверды.х растворов. Фосфор при 450 С и выше взаимодействует с титаном с образованием фосфидов. [c.263]

    Свойства титана требуют применения особых технологических приемов производства и обработки. При повышенных температурах титан взаимодействует с обычными футеровочными материалами, со мн( гими металлами образует сплавы, имеющие низкие температуры плавления ( 1000° С). Для получения титана необходим процесс, который протекал бы при температуре ниже точки плавления сплава титана с материалом реактора. Из-за взаимодействия титана с газами получают и плавят его в атмосфере аргона или в вакууме. [c.414]

    Титан очень легко взаимодействует с кислородом и водородом. При коррозии титана в кислотах, как и при катодной поляризации его, часть водорода, выделяющегося на титане, поглощается металлом. Титан и его сплавы в условиях эксплуатации могут подвергаться катодной поляризации при контакте с менее благородными металлами, при наличии зазоров, щелей (когда внешняя поверхность выполняет роль катода, а щель или зазор являются анодом) и при катодной защите конструкций, отдельные детали которых по конструктивным соображениям выполнены из титана. [c.17]

    Такие термодинамически неустойчивые металлы, как титан, магний, алюминий, способны пассивироваться в некоторых средах и становиться коррозионностойкими. Различие в поведении металлов связано с тем, что скорость коррозионного процесса часто снижается вследствие образования труднорастворимых продуктов коррозии, пассивных пленок в результате взаимодействия металлов с коррозионной средой. [c.24]

    Титан взаимодействует с реагентами, содержащими фенольные или спиртовые ОН-группы, с образованием полярных связей металл—кислород. Эти связи стабилизуются благодаря образованию связей вторым донорным атомом кислорода, азота или серы при этом образуются 5-или 6-членные хелатные циклы. Образующиеся соединения окрашены [c.398]

    При сварке титан взаимодействует с кислородом и азотом и поэтому дуговая сварка титана должна проводиться в среде защитных газов применяется аргоно-дуговая сварка или вакуумная- Прочность сварного соединения составляет 90% от прочности основного металла. При температуре выше 500°С поверхностный слой титана становится проницаемым для кисло-родэ титан рекомендуется применять для температур не выше 350°С. [c.23]

    Очень чистые металлы получают термическим разложением тетра-иодидов Э14 при высокой температуре в вакууме. На рис. 222 изображен сосуд из стекла пирекс для получения чистого титана. Через отверстие 1 поступают порошкообразный титан и иод, через отверстие 2 откачивают воздух. В ходе процесса сосуд нагревают до 600" С и электрической печи, а титановая проволока 3 нагревается электрическим током. При 200° С титан и иод взаимодействуют с образованием Til 4, кото )ЫЙ при 377° С сублимирует. Пары Til 4 при соприкосновении с титановой проволокой, нагретой до 1100—1400° С, разлагаются металлический титан оседает на проволоку, а пары иода конденсируются на холодных частях прибора. [c.531]

    Титан по уд. весу (4,5) занимает промежуточное место между сталью и легкими сплавами. Сплавы титана более прочные, чем стали. Активно взаимодействует с кислородом, водородом, азотом и приобретает хрупкость при температуре выше 600° С (например, после сварки). Стандартный потенциал титана V = —1,63 в, но из-за склонности к образованию защитных пленок на своей поверхности стационарный потенциал, например в морской воде, смещается до значения -1-0,09 в. Очень высока стойкость титана и его сплавов в нейтральных или слабокислых растворах хлоридов, а также в растворах окислителей, содержащих хлор-ионы. Достаточно стоек в НЫОз до 65%-ной концентрации при температурах до 100° С, в смеси 40% Нг504 + + 60% НЫОз при 35° С. В концентрированной НМОз при повышенных температурах скорость растворения титана выше, чем алюминия или нержавеющей стали. В разбавленных (до 20%) щелочных растворах не разрушается. Стоек против коррозионного растрескивания. Очень стоек в морской воде и морской атмосфере. Титан — жаропрочный металл. Ряд сплавов на основе титана имеет более высокие механические свойства, чем сам титан. [c.60]


    Жидкий бром способен химически взаимодействовать со многими металлами при обычных температурах. Он заметно разрушает углеродистую сталь и титан, меньше — никель и незначительно — железо, свинец, платину и золото. [c.141]

    В соединениях титан обычно четырехгалентен, реже трех- и двухвалентен. Двухвалентные соединения неустойчивы. При нагреве титан взаимодействует с галогенами, кислородом, серой и азотом. Окислы титана в канале угольного электрода восстанавливаются до металла, который с углеродом образует тугоплавкий карбид титана Т1С (т. пл. 3140 °С, т. кип. 4300 °С). В ряду летучести А. К. Русанова титан и его окислы располагаются после ванадия и хрома. Основная масса титана при испарении его окислов из канала угольного электрода поступает в пламя дуги во второй половине экспозиции (рис. 109). При очень сильном нагреве титана с кремнием образуются силициды титана (т. пл. Т1512 [c.269]

    Вода при соприкосновении с ювенильной поверхностью титана вытягивает из него ионы Т1 + стандартный электродный потенциал для этого процесса равен — 1,630 В. Судя по этому электродному потенциалу, титан является электрохимически довольно активным металлом. Однако поверхность титана обыч ю покрыта оксидной пленкой, поэтому практически при обычной температуре вода на титан не действует. Кипящая вода взаимодействует с порошкообразным титаном с выделением водорода  [c.263]

    Под действием водорода и металлов диоксид титана способен восстанавливаться, причем в зависимости от условий восстановление идет до соединений титана (III) и титана (II). Отличительной особенностью оксида титана (IV) является его способность взаимодействовать с элементарным титаном с образованием ряда низших оксидов и твердых растворов, образуемых ими друг с другом, с элементарным титаном и с оксидом титана (IV). Таким образом, система Т] — ТЮо является источником образования низших оксидов титана, и для практического получения их используется обычно взаимодействие диоксида с элементарным титаном. Изучение свойств в системе Т1 — ТЮ2 позволяет также теоретически обосновать природу исключительной коррозионной стойкости металлического титана. Получение препаратов системы Т1 — Т 0г, состоящих из низших оксидов титана и ряда твердых растворов. [c.266]

    При нормальной температуре некоторые металлы энергично взаимодействуют со фтором. При повышенных температурах большая часть стойких в среде кислорода металлов (платина, вольфрам. титан, хром) окисляется фт6 )ом. часто с образованием летучих про дуктов реакции. Эти металлы не могут применяться в качестве конструкционных материалов. [c.852]

    Для поглощения остаточных газов в изоляционном пространстве после создания вакуума широко применяют различные адсорбенты (активированный уголь, силикагель и т. д.), адсорбционная способность которых при низкой температуре увеличивается. Холодные стенки оборудования также способствуют конденсации остаточных газов. Для поддержания глубокого вакуума применяют и химические реагенты (геттеры), связывающие остаточные газы. В качестве геттеров используются щелочноземельные металлы и, кроме того, цирконий и титан, в которых газы растворяются без химического взаимодействия [85]. [c.101]

    Титан — тугоплавкий металл серебристого цвета. Температура плавления 1668 4°С. Как отмечалось, его коррозионная стойкость является одним из наиболее ценных свойств. При комнатной температуре титан не- растворяется в минеральных кислотах, водных растворах щелочей он нерастворим и в горячих водных растворах щелочей. Растворяется при нагревании в разбавленных соляной и серной кислотах с образованием соединений Ti (III), окрашенных в фиолетовый цвет. Эти соединения являются неустойчивыми при взаимодействии с кислородом воздуха Ti (III) постепенно окисляется до Ti (IV), соединения которого бесцветны 2Ti l3 + 2H l + /гОг ТЮЦ+НгО. Для ускорения окисления титана к сернокислому или солянокислому растворам, полученным после растворения титана, добавляют какой-либо окислитель, например азотную кислоту. [c.119]

    Интересно отметить, что растворимость азота в а-Ре увеличивается с повышением температуры, а в 7-Ре, наоборот, уменьшается. В некоторых случаях энергия взаимодействия атомов газа И металла столь велика, что превышает затраты энергии на диссоциацию и раздвижение атомов металла. Поэтому при растворении газа в металле происходит выделение тепла и растворимость уменьшается с ростом температуры. Это имеет место, например, при растворении водорода в титане. [c.90]

    Титан почти или совершенно не взаимодействует со щелочными, щелочноземельными и редкоземельными (кроме скандия) металлами, т. е. не образует с ними ни соединений, ни твердых растворов, С остальными металлами титан взаимодействует, однако характер этого взаимодействия с разными металлами различен металлы, яьл.чющиеся аналогами титана и ближайшими его соседями по периодической системе, а именно цирконий, гафний, скандии, ванадий, ниобий, тантал, а также молибден и вольфрам, не образуют с титаном соединений, [го образуют непрерывные ряды твердых растворов другие металлы дают с титаном интерметалличе-ские соединения и ограниченные твердые растворы. [c.263]

    Велика роль азота в металлургических процессах. Обычно его присутствие ухудшает свойства металлов, поэтому стремятся предотвратить взаимодействие металла с азотом или удалить из металла содержаи ийся в нем азот. В частности, при юлучении высококачественных сталей азот удаляют добавкой титана (в виде сплава с железом-ферротнтана). Титан образует очень прочный нитрид, который переходит в шлак. Вместе с тем проводят азотирование поверхности стали, образовавшиеся нитриды железа значительно увеличивают твердость поверхностного слоя изделий. [c.411]

    Прочность комплексов зависит как от природы гетероатом-ной функции, так и от природы и валентного состояния атома металла. Известно, что ряд металлов (А1, Ли, и др.) хорошо координируется насыщенными сульфидами и слабо — тиофено-выми соединениями. Титан селективно связывается с основными азотистыми функциями и значительно менее активно — с многими другими распространенными в нефти гетерофункциями. Соли двухвалентной ртути образуют координационные соединения предпочтительнее с насыщенными органическими сульфидами, а соли одновалентной ртути —с арилсульфидами [15]. Учитывая специфичность донорно-акцепторного взаимодействия металлов с органическими соединениями, можно прийти к выводу, что комплексообразующая способность компонентов нефти и, следовательно, их групповой и функциональный состав должны быть причислены к важнейшим факторам, определяющим количество связанных в нефти микроэлементов. Очевидно, что закономерности в содержании и распределении микроэлементов в нефтях должны являться отражением общих закономерностей формирования состава нефтей, в особенности состава их гетероатомных и высокомолекулярных компонентов. [c.145]

    В одной из работ [281] указывается на образование (NH4)2Ti U при 120-часовом нагревании в автоклаве четыреххлористого титана с хлористым аммонием до 410° С. Образования подобных соединений при взаимодействии безводного четыреххлористого титана с хлоридами щелочных металлов, однако, при повышенных температурах не наблюдалось [282, 283], хотя четыреххлористый ванадий, похожий по свойствам на четыреххлористый титан, взаимодействует с хлоридами щелочных металлов. [c.154]

    Эта методика была разработана Алленом и Гамильтоном . После разрушения органического вещества медь, висмут ртуть и серебро удаляют экстракцией дитизонатов четыреххлбристым углеродом при pH 3. Вольфрам и молибден извлекают экстракцией их купферратов изоамиловым спиртом и молибден отделяют в виде его дитиолатов петролейным эфиром из холодного 8 н. раствора серной кислоты (применяется и более концентрированный раствор). После удаления молибдена вольфрам может быть извлечен в виде дитиолата из раствора меньшей кислотности, который необходимо нагреть для образования комплексов вольфрама. При использовании в качестве растворителя петролейного эфира максимальная экстракция вольфрама имеет место при pH 0,5—2,0. Количественное извлечение вольфрама не происходит в отсутствие фосфорной кислоты. Железо, титан, ванадий и цирконий могут быть использованы как заменители фосфорной кислоты при добавлении их к вольфраму в молярном отношении, превышающем 4 1. Влияние фосфорной кислоты объясняется образованием ионов фосфорновольфрамовой кислоты, но механизм взаимодействия металлов не ясен. Возможно, они ускоряют реакцию между вольфрамом и дитиолом точно так же, как железо ускоряет реакцию молибдена с дитиолом. Извлечение вольфрама становится менее полным по мере увеличения концентрации электролита, но этот эффект подавляется увеличением концентрации дитиола. Для полного извлечения вольфрама необходимо энергичное встряхивание. Кривая светопоглощения дитиолата вольфрама в петролейном эфире очень похожа на кривую поглощения в бутилацетате (рис. 75, стр. 583). [c.804]

    Одним из важнейших качеств титана является его высокая коррозионная стойкость во многих агрессивных средах, обусловленная образованием на его поверхности тонкой инертной пленки из диоксида, взаимодействующего с нижележащим слоем титана с образованием низших оксидов, растворимых в металле, благодаря чему защитная пленка прочно связывается с поверхностью. Наиболее устойчив титан и водных растворах нейтральных солей. По коррозионной стойкости в морской воде и горячих концентрированных растворах хлоридов титан значительно превосходит все известные нержавеющие стали и цветные металлы. Если и происходит коррозия титана, то почти всегда она протекает равномерно, без локализации по точкам, язвам или границам зерен. Наряду с Э1ИМ ценность титана как конструкционного материала обусловлена его значительной удельной прочностью (отношение прочности к плотности), которая у титана больше, чем у любого другого металла. [c.274]

    Титан взаимодействует при повышенных температурах с окисью и двуокисью углерода, водяным паром, аммиаком и многими летучими органическими соединениями, которые, так же как и газы, загрязняют металл. Водяной пар, содержащийся в атмосферном воздухе, отрицательно влияет на титан при термической обработке, проводимой при высоких температурах. Это связано с тем, что при высоких температурах на поверхности титана возможно разложение водяного пара и насыщение металла не только кислородом, но и водородом, уменьшающими сошротивление металла удару после охлаждения. Раскаленный титан может насыщаться водородом также в [c.63]

    Наиболее распространенный тип металлсодержащих соединений нефти относится к полилигандным комплексам, где в качестве лиганда могут быть любые молекулы из широкой гаммы гетероорганических соединений. Такие комплексы образуются при координащ1и атома металлов Ре, Со, V, К1,Сг, 2п и др. с атомами К, 8, О гетерогенных соединений. Прочность комплексов определяется природой гетероатома и металла. В связи со специфичностью донорно-акцепторных взаимодействий соли двухвалентной ртути предпочтительнее образуют комплекс с насыщенными сульфидами, а одновалентной - с арилсуль-фидами титан селективно взаимодействует с основными азотистыми соединениями и гораздо слабее - со многими другими гетеросоедине-ниями. [c.29]

    Штрауманис с сотрудниками [ ] придают большое значение кислороду в Ti порошке, поскольку кислород способствует диспергированию металла в расплаве, и считают, что кислород полностью или частично переносится диспергированными частицами титана на покрываемый материал. Исходя из этого положения, следует ожидать, что титановые покрытия должны быть сильно загрязнены кислородом, т. е. некачественны. В частности, по их данным, титан взаимодействует с кремнеземом фарфора при осаждении с образованием металлического кремния и твердого раствора кремния в титане. Как только концентрация титана в верхних слоях покрытия становится высокой, образование покрытия прекращается. [c.234]

    Титан при новьпненных темпс1)атурах взаимодействует окисью н двуокисью углерода, водяным паром, аммиаком, и многими летучими органическими соединепиямп, которые, так же как и азы, загрязняют металл. При высокнх температурах на [c.143]

    Как уже указывалось, титан способен взаимодействовать с углеродом лишь при высоких температурах. В системе титан — углерод при этих условиях образуются очень твердые сплавы, содержащие карбид титана Т1С — кристаллическое металлоподобное вещество с температурой плавления 3140°С, и ряд твердых растворов. Карбид титана проводит электрический ток, легко сплавляется с металлами и другими карбидами, образуя при этом иногда чрезвычайно твердые тугоплавкие сплавы. При обычной температуре карбид титана довольно инертен, при высоких же температурах ведет себя подобно элементарному титану — реагирует с галогенами, кислородом, серой, азотом, а таклсе с кислотами и солями — окислителями с образованием продуктов, аналогичных получающимся при действии на элементарный титан. Подобные карбиду соединения титан образует с фосфором (фосфиды), кремнием (силиды), бором (бориды). [c.270]

    Очень чистые металлы получают термическим разложением тетраиодидов ЭЦ при высокой температуре в вакууме. На рис. 217 изображен сосуд из стекла пирекс для получения чистого титана. Через отверстие 1 поступают порошкообразный титан и иод, через отверстие 2 откачивают воздух. В ходе процесса сосуд нагревают до 600°С в электрической печи, а титановая проволока 3 нагревается электрическим током. При 200°С титан и иод взаимодействуют с образованием Т114, который при 377°С сублимируется. [c.499]


Смотреть страницы где упоминается термин Титан взаимодействие с металлам: [c.149]    [c.119]    [c.366]   
Структура металических катализов (1978) -- [ c.281 ]




ПОИСК





Смотрите так же термины и статьи:

взаимодействие с металлами



© 2025 chem21.info Реклама на сайте