Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Циркония серной кислотой

    Исследование элюирования титана и циркония серной кислотой [2580]. [c.344]

    Исследования по элюированию титана и циркония серной кислотой [2947]. [c.364]

    Ход анал и за a. Раствор, содержащий от 0,02 до 0,1 ммоль (от 2 до 10 мг) циркония, вносят в стакан для титрования и разбавляют до 50 мл серной кислотой (1 10). В течение 10 мин пропускают азот для удаления растворенного кислорода, после чего начинают титрование, пропуская азот после каждого добавления реактива показания гальванометра записывают не сразу, а через 1—1,5 мин после добавления реактива. Кривая титрования имеет форму б. Если содержание фторида превышает содержание циркония в 30—35 раз, то перед разбавлением раствора циркония серной кислотой добавляют раствор алюминия, связывающего фторид в комплексное соединение. Раствор алюминия готовят следующим образом 5 г хлорида алюминия (шестиводного) растворяют в 50 мл 10%-ной серной кислоты. Для приготовления стандартного раствора [c.352]


    Отделение от кремния может проводиться выщелачиванием продукта разложения циркона серной кислотой с последующей коагуляцией кремниевой кислоты клеем [15]. [c.121]

    Важной характерной особенностью циркония является его стойкость в соляной кислоте различных концентраций при 100°С. В серной кислоте цирконий устойчив только до концентрации кислоты 80%. Коррозионная стойкость циркония в фосфорной кислоте в сильной степени зависит от температуры. Так, при 38° С скорость коррозии циркония в фосфорной кислоте не превышает 0,13 мм1год при повышении температуры до 100° С цирконий стоек в фосфорной кислоте концентрации до 60% (рис. 197). [c.289]

    Эффективны два типа катализаторов кислого характера безводные соли галоидоводородных кислот типа Фриделя — Крафтса и кислоты, способные к переносу протона. В качестве примеров катализаторов первого типа можно привести хлористый алюминий, бромистый алюминий, хлористый цирконий и фтористый бор газообразный хлористый водород используется в качестве промотора этих катализаторов. Серная кислота и жидкий фтористый водород являются главными катализаторами второго типа. Как соли галоидоводородных кислот, так и переносящие протоны кислоты переходят в нижние слой или осадки , которые представляют собой комплексы, получающиеся в результате соединения катализаторов [c.304]

    Влияние фтористого бора на алкилирование алканов [174] и цикланов [175] олефинами изучалось впервые в 1935 г. Исследование каталитического алкилирования выявило целый ряд эффективных катализаторов алкилирования серная кислота, плавиковая кислота, фторид бора, хлористый цирконий и т. д. [c.58]

    Термодинамические расчеты показывают, что при низких температурах свободная энергия реакций отрицательна [517]. В отсутствии какого-либо катализатора и при атмосферном давлении прибавление изобутана к изобутилену термодинамически возможно при температурах вплоть до 260° С [518]. Реакция легко проходит при комнатной температуре с высоким выходом в присутствии соединений типа Фридель — Крафтса и сильных кислот (хлорид хрома, четыреххлористый цирконий [519], три-фтористый бор [520], серная кислота [521—526], фтористоводородная кислота [527]). Так как реакция сопровождается умень- [c.126]


    На цирконий и гафний серная кислота не действует. [c.81]

    Ha цирконий и гафний серная кислота не действует. Водный раствор плавиковой кислоты растворяет все три металла, например [c.330]

    Кислородсодержащие кислоты также реагируют с металлами IVB-подгруппы неодинаково. Серная кислота с цирконием и гафнием не взаимодействует, но растворяет титан. Концентрированная серная кислота (прп нагревании) восстанавливается титаном до оксида серы (IV)  [c.410]

    Цирконий более устойчив по отношению к кислотам, чем титан. До 100 °С на него не действуют ни соляная, ни азотная кислоты любых концентраций. Серная кислота начинает взаимодействовать с цирконием при концентрациях выше 50%. Цирконий не растворяется в водных растворах щелочей, но растворяется при 100 С в плавиковой и концентрированной серной кислотах. [c.460]

    Цирконий и гафний представляют собой серебристобелые металлы с температурами плавления 1855 С (Zr) и 2230 °С (НР). Химическая активность их невелика, что обусловлено образованием на пх поверхности защитных оксидных пленок. Цирконий и гафний устойчивы к действию растворов щелочей, азотной и хлороводородной кислот. Они растворяются в концентрированной серной кислоте ири нагревании, фтороводородной кислоте и царской водке с образованием комплексных соединений, наиример  [c.263]

    Цирконий устойчив при действии растворов щелочей любых концентраций и температур, расплавленной щелочи, азотной и соляной кислот (независимо от концентрации и температуры), серной кислоты (при концентрации ниже 70% до температуры кипения), фосфорной кислоты (при концентрации ниже 55% до температуры кипения), кипящих муравьиной, уксусной и молочной кислот, морской воды. Цирконий корродирует при действии на него сред, содержащих окислители (Р еСЬ, СиСЬ), плавиковой кислоты, кремнефтористоводородной кислоты, влажного хлора, царской водки, кипящего хлористого кальция. [c.19]

    Скорость коррозии циркония в аэрированных растворах серной кислоты [c.404]

    По первому варианту [666] раствор, содержащий от0,02до0,1 ммоля (2—10 жг) циркония, вносят в стакан для титрования и разбавляют до 50 мл H2SO4 (1 10). В течение 10 мин. пропускают азот для удаления растворенного кислорода, после чего начинают титрование, пропуская азот после каждого добавления реагента. Показания гальванометра записывают через 1—1,5 мин. после прибавления, реагента. Если содержание ионов фтора превышает содержание циркония р 30—35 раз, то перед разбавлением раствора циркония серной кислотой добавляют раствор соли алюминия .  [c.127]

    При анализе керамики гшркоипй вследствие гидролиза его солей частично попадает в осадок кремневой кислоты. Но в сернокислых растворах соли циркония. менее подвержены гидроли-3 - вследствие образования устойчивого комплекса цирконил-серной кислоты, поэтому для более полного отде.тепия циркония от кремневой кислоты лучше применять выпаривание с серной, а не с соляной кислотой. [c.85]

    Особым коррозионным свойством циркония является его стойкость в щелочах всех концентраций при температурах вплоть до температуры кипения. Он стоек также в расплаве гидроксида натрия. В этом отношении он отличается от тантала и, в меньшей степени, от титана, которые разрушаются под воздействием горячих щелочей. Цирконий стоек в соляной и азотной кислотах любой концентрации и в растворах серной кислоты с содержанием H2SO4 < 70 % вплоть до температур кипения этих сред. В НС1 и подобных средах оптимальной стойкостью обладает металл с низким содержанием углерода (<0,06 %). В кипящей 20 % НС1 после определенного времени выдержки наблюдается резкое возрастание скорости коррозии конечная скорость составляет обычно менее 0,11 мм/год [461. Цирконий не стоек в окислительных растворах хлоридов металлов (например, в растворах РеС1з наблюдается питтинг), а также в HF и кремнефтористоводородной кислоте. [c.379]

    Успешное проведение экстракции возможно лишь при соответствующей подготовке исходного раствора. Содержащийся в нем ZrSi04 реагирует с NaOH, полученная смесь промывается водой, а затем задается азотная, соляная или серная кислота. Непосредственная обработка азотной кислотой дает продукт, который легко коагулирует и создает большие затруднения при экстракции. Хорошие результаты получаются, если после промывки задать концентрированную серную кислоту (2 кг на 1 кг продукта). Далее идет нейтрализация аммиаком, и полученный гидрат окиси циркония затем растворяют в азотной кислоте до получения 5,1 н. раствора HNOg. Приготовленный таким образом раствор экстрагируют. [c.449]

    Концентраты силикатов циркония и гафния разлагают спеканием с СаО или СаСОз (продукты спекания обрабатывают концентрированной серной кислотой), сплавлением о NaOH или Naa Oa, спеканием с фторосиликатом калия  [c.502]

    В азотной кислоте любой концентрации цирконий коррозии не подвергается. Следует, однако, учитывать возможность взрывной реакции циркония в дымящей HNO3, так же как и у титана. Добавка к серной кислоте небольших количеств азотной кислоты [c.289]


    В разбавленных соляной и серной кислотах титан растворяется медленно. Устойчив титан и по отношению к растворам щелочей (для NaOH до концентрации, равной 20%). Цирконий устойчив по [c.236]

    С разбавленными растворами кислот диоксиды не реагируют. Очень медленно реакция идет лишь с кипящей плавиковой и концентрированной серной кислотами. Со щелочами и с основными оксидами диоксиды титана и циркония (а также гафния) взаимодействуют при сплавлении с образованием титанатов и цирконатов (гафнатов) соответствующих металлов  [c.82]

    Для приготовления эталонных растворов в шесть мерных колб емкостью 50 мл вводят стандартный раствор, содержащий цирконий (мкг) 0 5,0 10,0 20,0 30,0 50,0 соответственно, добавляют 1 н. серную кислоту до 30 мл, прибавляют 1 мл раствора реагента и доводят объем раствора водой до метки. Измеряют оптическую плотность эталонных растворов при А, 535 нм на фотоэлектроколориметре ФЭК-60 или спектрофотометрах различных марок относительно первого раствора, в который не вводили цирконий, Градуи- [c.224]

    Для определения циркония в сплавах берут две навески его по 0,1 г, растворяют каждую в стакане из жаропрочного стекла емкостью 150— 200 мл, добавляют 0,3 г сульфата аммония и 3 мл Н. ЗОд (пл. 1,84), нагревая содержание стакана на электрической плитке. После разложения сплава добавляют 0,1—0,2 мл перекиси водорода, раствор переводят в мерную колбу емкостью 100 Мо 1 и объем раствора доводят водой до метки. В две мерные колбы емкостью 50 мл отбирают в каждую аликвотные части по 5—10 мл, содержащие не более 50 мкг 2г, и добавляют 1 н. Н2804 до объема 20 мл. В одну из колб добавляют 0,2 мл раствора комплексона, тщательно перемешивают, затем в обе колбы вводят по 1 мл раствора ксиленолового оранжевого и доводят объем раствора водой до метки кислотность раствора должна быть 0,4 н. по серной кислоте. Оптическую плотность этого раствора измеряют на фотоэлектроколориметрах ФЭК-56, ФЭК-60 или спектрофотометрах различных марок при Х535 нм относительно раствора, в который не вводится комплексон. Содержание циркония находят по градуировочному графику. Результаты параллельных определений ( не менее четырех) обрабатывают методом математической статистики. [c.225]

    Приборы и реактивы. (Полумикрометод.) Титан (порошок). Цинк (гранулированный). Растворы тетрахлорида титана (0,5 н.), сульфата титана (IV) (0,1 н.), едкого кали или натра (4 н.), серной кислоты (4 н.), иероксида водорода (3%-ный), нитрата или хлорида циркония (IV) (0,5 н.), соляной кислоты (пл. 1,19 г см ). [c.212]

    Анодное оксидирование может быть изучено на различных металлах, лучше всего обнаруживающих эту способность в растворах, не обладающих заметным воздействием на оксидную пленку. Так, алюминий хорошо оксидируется в кислом боратном буферном растворе, титан — в растворах серной кислоты. Цирконий, ванадий, ниобий — металлы, вообще характеризующиеся высокой коррозионной стойкостью во многих средах, соответственно легко оксидируются в кислых, нейтральных и щелочных растворах. Однако введение, например, фтор-ионов резко замедляет процесс формирования оксидной пленки или даже полностью его исключает вследствие образования в качест- [c.237]

    Остаток после водного выщелачивания обрабатывают кислотами, в раствор переходит цирконий и примеси — железо, титан, алюминий и др. Кремниевая кислота в зависимости от концентрации кислоты, ее природы и температуры выделяется в виде плотного порошка либо образует гели и золи. Золи кремниевой кислоты обладают максимальной устойчивостью в интервале концентраций кислот0,0005—0,5 н. Наибольшая же скорость коагуляции наблюдается при pH 5—6 либо при концентрации кислот выше 2—3 н. Более сильным коагулирующим действием обладает серная кислота. Отделить кремниевую кислоту— сложная технологическая задача, коагуляция ее может продолжаться сутками. Для ее ускорения растворы нагревают и вводят в них столярный клей или другие коагулянты. Содовый спек, состоящий в основном из Na2ZrSi05, выщелачивается сразу кислотой. В этом случае количество SI02- хНгО значительно больше, так как предварительно ее не отделяют. Кремниевая кислота адсорбирует довольно много циркония, что вызывает его потери. [c.317]

    Разложение спека. Разлагают спек соляной или серной кислотой. При обработке соляной кислотой в раствор в первую очередь переходят a l2 и избыточная СаО, затем разлагаются силикаты кальция и в последнюю очередь цирконат и цирконосиликат кальция. Пока в спеке остается свободная или связанная СаО, цирконий в раствор не переходит. Для облегчения отделения кремниевой кислоты выщелачивание проводят в две стадии. Сначала спек обрабатывают на холоду разбавленной (5%) соляной кислотой. Количество ее берется из расчета нейтрализации избыточной СаО и разложения силикатов кальция на - 70%. После отстаивания и декантации раствора твердый остаток обрабатывают концентрированной (25—30%) кислотой при 70—80° до полного его разложения. В раствор добавляют столярный клей после охлаждения и отстаивания декантируют. [c.319]

    Для экстракции используют еодгый раствор, приготовленный растворением тетрахлорида или оксихлорида циркония (гафния), и содержащий 90—100 г/л Zr, 1 моль/л НС1 и 1 моль/л NH4N S, и гексон, содержащий 2,7 моль/л HN S. Экстракт промывают разбавленной соляной кислотой для вывода из него части циркония. В водной фазе остаются 90% Zr, содержащего 0,01% Hf, а также примеси Fe, Al, Ti идр. Очищают от них обычными методами переосаждения. Из экстракта серной кислотой реэкстрагируют гафниевый концентрат (20% Hf). Роданистоводородную кислоту регенерируют, экстрагируя ее гексоном и обрабатывая экстракт аммиаком. Раствор роданида аммония возвращают на приготовление исходного раствора (рис. 105). Недостатки процесса необходимость использовать довольно дорогие реагенты, их регенерация, большие потери гексона вследствие растворения в воде и испарения [15, 16, 79, 93]. [c.339]

    С цирконием и гафнием они дают прочные соединения, разрушаемые только плавиковой или серной кислотой, поэтому из цикла экстракции непрерывно выводят часть ТБФ на регенерацию H0SO4 или вакуумной перегонкой [15, 16, 61, 69, 79, 93, [c.343]

    На цирконий н гафний серная кислота не действует. Водный раствор плавир овой кислоты растворие все три металла, иапример [c.410]

    Гафний Hf (лат. Hafnium, от древнего названия Копенгагена — Hafnia). Г.— элемент IV группы 6-го периода периодич. системы Д. И. Менделеева, п. и. 72, атомная масса 178,49. Положение Г. в периодической системе было предсказано Д. И. Менделеевым. Д. Костер и Г. Хевеши в 1923 г. обнаружили Г. в норвежской руде. Г.— типичный рассеянный элемент. Он не образует собственных минера.яов и в природе сопутствует цирконию. Г.— серебристо-белый металл. Чистый Г. пластичен, легко поддается холодной и горячей обработке. По химическим свойствам сходен с цирконием. В соединениях проявляет степень окисления-(-4. Металлический Г. на воздухе покрывается пленкой оксида НГОг.При нагревании реагирует с галогенами, а при высоких температурах с азотом и углеродом, образуя тугоплавкие HfN и Hf . Растворяется в плавиковой и концентрированной серной кислоте. Водные растворы солей Г. легко гидролизуются. Применяется Г. для изготовления катодов электронных ламп, нитей ламп накаливания, жаростойких железных и никелевых сплавов, в атомной технике и др. [c.36]

    Нормальные бромистые алкилы обычно перегруппировываются в соответствующие продукты изостроения. Алкилирование нормальными хлористыми алкилами или первичными спиртами в присутствии серной кислоты как катализатора приводит обычно к продуктам изостроения, а при употреблении хлористого алюминия могут получаться углеводороды нормального строения (Ипатьев, 1940). При алкилировании бензола галогенидами I или II в присутствии хлористого алюминия или хло ристого циркония В кэчестве катализаторов преимущественно получается вещество III, тогда как главным продуктом реакции, проведенной в нитрометане в присутствии хлористого алюминия или хлор- [c.170]

    Катализаторами этой реакции являются растворимые в серной кислоте соли ванадия, молибдена железа, титана, то рия и циркония. В качестве аминирующего вещества чаще всего применяют сернокислый гидр-оксиламин, соли гидроксиламиносульфокислот или вещества, которые в концентрированной серной кислоте распадаются с образованием гидроксиламина. [c.283]

    Мелкораздроблецные титан, цирконий и гафний взаимодействуют при нагревании с концентрированной серной кислотой  [c.578]

    Алкилирование изопарафиновых углеводородов моноолефинами катализируется протоновыми кислотами (серной кислотой [6, 24] и фтористоводородной кислотой [13, 20]), а также галоидными катализаторами типа катализаторов Фриделя-Крафтса (хлористый алюминий [15, 16, 27], фтористый бор [15], хлористый цирконий [16] и другие). В нефтепереработке практическое значение в качестве катализаторов алкилирования имеют только серная кислОта и фтористый водород вследствие легкости работы с этими жидкими продуктами, высокой избирательности реакции, возможности регулировать активность катализатора и отсутствия коррозии обычных конструкционных материалов. [c.177]


Смотреть страницы где упоминается термин Циркония серной кислотой: [c.97]    [c.205]    [c.446]    [c.290]    [c.66]    [c.431]    [c.66]    [c.144]    [c.203]    [c.58]    [c.286]    [c.354]    [c.322]    [c.309]   
Методы разложения в аналитической химии (1984) -- [ c.84 ]




ПОИСК







© 2024 chem21.info Реклама на сайте