Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Инертного газа плавления

    Получение металлического титана." Свойства титана требуют применения особых приемов производства и обработки. При повышенной температуре он взаимодействует с обычными футеровочными материалами и газами, со многими металлами образует сплавы, имеющие низкие температуры плавления (< 1000°). Для его получения необходим процесс, который протекал бы при температуре ниже точки плавления сплава титана с материалом реактора. Из-за взаимодействия титана с газами все операции должны проводиться в атмосфере инертного газа (аргона) или в вакууме. Способы получения металлического титана можно разделить на три группы 1) металлотермия, [c.268]


    При строгом соблюдении постоянства условий определения можно добиться удовлетворительного воспроизведения результатов. В таких случаях допускается использовать температуру плавления с разложением для характеристики вещества. Следует только иметь в виду, что точность полученных цифр весьма относительна и они справедливы только для выбранных конкретных условий определения. Если разложение обусловлено окислением вещества кислородом воздуха, температуру плавления определяют в атмосфере инертного газа или в вакууме. [c.182]

    Поликонденсацию в расплаве ведут без растворителей, нагревая мономеры при температуре на 10—20°С выше температуры плавления (размягчения) полимеров (обычно 200—400 °С). Процесс начинается в среде инертного газа и заканчивается в вакууме. [c.356]

    Инертные газы характеризуются чрезвычайно низкими температурами плавления и кипения, повышающимися от гелия к радону, [c.634]

    При необходимости определения температуры плавления без доступа воздуха, капилляр, вытянутый из отрезка стеклянной трубки не отламывая его от трубки, запаивают с одного конца и набивают веществом. Далее трубку подсоединяют к вакуумной линии, капилляр отпаивают либо под вакуумом либо после заполнения системы инертным газом. [c.176]

    В виде простых веществ криптон, ксенон и радон — неметаллы с низкими температурами плавления и кипения. Их обычно (а также Не, Ne и Аг) называют благородными или инертными газами. Основные физические константы простых веществ элементов подгруппы криптона и, для сравнения, типических элементов приведены ниже  [c.612]

    Почему инертные газы имеют низкие температуры плавления и кипения  [c.494]

    Самой низкой температурой плавления —272,1° С (25 атм) обладает инертный газ гелий самой высокой +3845° С — углерод. [c.100]

    Наиболее практически важно знание тех температурных условий, которые отвечают изменениям агрегатных состояний при нормальном атмосферном давлении (760 мм рт. ст.). Они обычно и указываются как температуры или точки плавления (т. пл.) и кипения (т. кип.) рассматриваемого вещества. Значения их для инертных газов видны из приводимого ниже сопоставления. [c.42]

    Инертные газы представляют собой вещества с относительно-очень низкими температурами плавления и кипения. Температура плавления гелия лежит близко от абсолютного нуля. По мере роста атомных масс температура плавления и кипения инертных газов повышается и у радона 4ип достигает —61,9°С. [c.198]

    Поликонденсацию проводят в расплаве, на поверхности раздела фаз и в растворителе. Если исходные вещества и полимер устойчивы при температуре плавления, то поликонденсацию проводят в расплаве при температуре 200—280 °С в среде инертного газа и заканчивают обычно в вакууме для более полного удаления побочных продуктов из реакционной смеси. Полимеру не дают остыть в реакторе в виде блока, а вытягивают его в ленту, которую при охлаждении измельчают в крошку. Поликонденсация в расплаве наиболее распространена. [c.179]


    А5 л. У галогенов плавление сопровождается разрушением ряда слабых химических связей между димерами. Эти связи ослабевают с уменьшением порядкового номера галогена, поэтому энтропия плавления фтора в расчете на 1 моль Рг составляет всего 9,55 Дж/К моль, а у других галогенов увеличивается с ростом порядкового номера п. Относительно высокие значения энтропий плавления инертных газов обусловлены резкой перестройкой их структуры от ГЦК в твердой фазе к структуре, напоминающей ОЦК, в жидкой фазе, а также снижением плотности упаковки атомов. Аналогичны причины повышенных энтропий плавления алюминия и ртути. [c.285]

    Какой из рассматриваемых трех элементов должен иметь самые низкие значения температур плавления и кипения, если учесть, что эта способность характерна инертным газам  [c.24]

    Как видно из рис. 4.29, температуры плавления и кипения в рядах галогенов и инертных газов повышаются по мере перехода к более тяжелым элементам. Объясните эту зависимость, учитывая, что усложнение электронной структуры атомов облегчает их поляризуемость. [c.234]

    С возрастанием порядкового номера элемента в подгруппе хрома точка плавления металлов возрастает. Вольфрам — самый тугоплавкий из металлов. Он используется для изготовления нитей накала электролампочек. Ничтожная испаряемость вольфрама при высоких температурах обеспечивает долговечность нити накала. Но если извлечь такую нить из перегоревшей лампочки и внести в пламя, вольфрам окисляется в вольфрамовый ангидрид. Вольфрамовый и молибденовый ангидриды летучи при высоких температурах, в отличие от окиси хрома СггОз, и не могут защитить металл на воздухе от окисления. Поэтому лампочки и приходится наполнять разреженным инертным газом. [c.153]

    Чтобы удалить механические примеси, жидкий литий фильтруют через титановую, молибденовую или железную перфорированную жесть. С той же целью переплавляют литий при температуре, близкой к его плавлению, затем разделяют металл и примеси на основе различия в плотности. Переплавляют в железных тиглях под слоем парафинового, вазелинового или трансформаторного масла, под защитой паров керосина, или в атмосфере инертного газа [28, 112, 121] (этим расплавленный металл предохраняется от действия воздуха). [c.74]

    Фосфид галлия. При температуре плавления у фосфида галлия высокое давление диссоциации. Это сильно затрудняет его синтез — приходится использовать толстостенные кварцевые ампулы и подвергать их противодавлению инертного газа, для чего весь прибор помещают в установку высокого давления. Кварц при температуре вблизи точки плавления фосфида начинает размягчаться, поэтому контейнер (лодочка, трубка или тигель), который нагревают с помощью высокочастотного индуктора, не должен касаться стенок ампулы. В качестве материала контейнера при синтезе фосфида чаще всего используют графит, хотя это и приводит к загрязнению материала углеродом и получению мелкокристаллических слитков. Лучшие результаты получаются с нитридом бора или стеклоуглеродом [127]. [c.274]

    Гелий — квантовая жидкость (ему посвящена следующая глава). Строение других жидких инертных газов изучалось дифракционными методами неоднократно. Особенно подробно был исследован жидкий аргон. О результатах этих работ говорилось в гл. VI. Координационные числа атомов инертных газов, приводимые в литературе, различаются на 20—30%. Расхождения объясняются неточностями эксперимента и неоднозначностью способа расчета координационных чисел. Наиболее достоверные значения 2 жидких инертных газов около температуры плавления, по-видимому, близки к 8. Это значение координационного числа в сочетании с данными о росте объема при плавлении, приведенными в табл. 29, может быть истолковано с помощью модели хаотически распределенных сфер, изученной Д. Берналом и С. Кингом. Вместе с тем вопрос о строении жидких инертных газов пока еще [c.224]

    Итак, около 50% простых твердых веществ в точке плавления характеризуются ОЦК структурой и 30% обладает плотно, упакованными расположениями атомов. Посмотрим теперь, что происходит в результате плавления. Как уже говорилось, важнейшей характеристикой структуры простых жидкостей является среднее координационное число 2. Экспериментальные данные о координационных числах известны приблизительно для 40 простых жидкостей. Изучены все жидкие неметаллы, за исключением астата и радона (инертные газы, водород, азот, кислород, галогены, фосфор, сера, селен, теллур) Атомы жидких инертных газов имеют среднее координационное число, лежащее в интервале 8—9. (Здесь и далее мы пользуемся более поздними результатами дифракционных методов. Ранние измерения в ряде случаев приводили к завышенным значениям координационных чисел.) Остальные неметаллы подчиняются правилу 8—N. [c.269]

    Сопоставляя температуры плавления с данными о строении плавящихся фаз, можно отметить следующие закономерности. Т ц неметаллов одной подгруппы и однотипной структуры растут с увеличением порядкового номера п. Это наблюдается у инертных газов, галогенов, кислорода и его аналогов, азота и фосфора. В подгруппе кислорода полоний — металл, в подгруппе азота — мышьяк, сурьма и висмут тоже металлы, поэтому они не следуют указанному правилу. [c.280]


    Особенности молекулярной структуры определяются наличием в узлах пространственной решетки неполярных или полярных м о -л е к у л, связанных друг с другом только межмолекуляр-н ы м и силами. Хотя молекулы эти могут быть иногда и одпо-атомными (у инертных газов), однако по всем своим свойствам решетка продолжает оставаться молекулярной. Различие между атомными и молекулярными структурами обусловлено, следовательно, не столько самим типом частиц, сколько характером их взаимодействия. Так как межмолекулярные силы стягивают частицы друг с другом сравнительно слабо, твердые вещества молекулярной структуры характеризуются обычно низкими температурами плавления и малой твердостью. [c.89]

    Очищаемое вещество помещают в лодочку из очень чистого графита (при очистке германия) или из кварца (при очистке кремния). Лодочку помещают в горизонтальную трубку, у которой один конец запаян или через него подают инертный газ. Если он запаян, то другой конец трубы соединен с вакуумной установкой. Кварцевую трубу в отдельных местах охватывают двумя-тремя витками тугоплавкого провода, откачивают газы из нее, на витки провода подают напряжение от высокочастотного генератора. Вещество плавится индукционными токами в узких областях витков, где возникает непосредственный контакт жидкой н твердой фаз. Затем витки или лодочка перемещаются со скоростью 2—3 см/ч, вместе с тем перемещаются и зоны плавления вдоль лодочки, На рис. 81 указано перемещение лодочки вправо, значит, все три зоны плавления двигаются вдоль лодочки влево. Примеси, для которых /С<1, концентрируются в зонах плавления и вместе с ними перемещаются к концу слитка влево. Справа от зон плавления образуются слои вещества, более чистого относительно большинства примесей, так как для них /< <1. Те примеси, для которых /(>1, наоборот, попадают в слои слитка справа от зон плавлення. Если осуществить прохождение зон плавления справа налево по слитку много раз, то примеси с /С<1 соберутся в конце слитка слева. Для примесей с /(>1 метод мало эффективен. Самые чистые части слитка (из середины) используются для изготовления приборов. Таким методом можно очистить германий до образцов с [c.324]

    Н пкель. Он обладает хорошими литейными свойствами, легко куется и штампуется. Его сваривают никелевыми электродами в атмос(1)ере инертного газа. Аппаратуру из никеля применяют для процессов щелочного плавления, при переработке органических кислот, а также в тех случаях, когда требуется высокая чистота продукта или недопустимо применение кислотостойких сталей пследствпе нх действия как катализатора, ускоряющего ход нежелательных реакций. Никель — очень дефицитный металл, и для химической аппаратуры как самостоятельный конструкционный материал он применяется редко. [c.21]

    Установку орошения рекомендуется оборудовать автоматической системой пуска. Для этого можно применять заполненную воздухом или другим инертным газом побудительную сеть и спринклерные оросители с температурой плавления замка 345 К- Давление газа при этом должно подерживаться в пределах 0,2—03 МПа. Допускается в качестве воздушной побудительной системы применять электрическую пожарную сигнализацию с [c.153]

    На установке предусмотрены порционное разбавление сырья растворителем и направление раствора фильтрата второй ступени VII в суспензию сырья, проходящую через кристаллизаторы. Согласно схеме, фильтрат второй ступени VII цожно вводить в суспензию как до аммиачного кристаллизатора 4, так и после него. Суспензия поступает в приемник 11, а оттуда — на фильтры 12 первой ступени. Холод фильтрата V первой ступени используется в аппаратах 5, 7, 9, 10 и регенеративных кристаллизаторах 3, 6. 8. Пройдя их, фильтрат IX поступает в секцию регенерации растворителя. Осадок, образующийся на поверхности барабана фильтра первой ступени после промывки растворителем и отдувки инертным газом, сбрасывается в шнековое устройство, где разбавляется растворителем II, а затем суспензия VI поступает в сборник 14. Отсюда смесь подается в приемник 15, питающий фильтры 16 второй ступени, работающие при повышенной температуре, обеспечивающей получение парафина с требуемой температурой плавления. Раствор фильтрата VII второй ступени из сборника /7 подается на разбавление охлаждаемой суспензии сырья. Осадок на фильтрах 16 второй ступени промывается растворителем, а затем после отдувки и разбавления растворителем И суспензия VIII поступает в сборник 18, откуда, пройдя кристаллизатор 8, раствор парафина X направляется на регенерацию растворителя. [c.199]

    Выделение органической химии в самостоятельный раздел химической науки вызвано многими причинами. Во-первых, это связано с многочисленностью органических соединений (в настоящее время известно свыше трех миллионов органических Еси еств, а неорганических— около 150 тыс.). Вл дряя причина состоит в сложности и своеобразии органических веществ по сравнению с неорганическими. Например, их температуры плавления и кипения имеют более низкие значения они легко разрушаются при воздействии на них даже сравнительно невысоких температур (часто не превышающих 100°С), в то время как неорганические вещества свободно выдерживают очень высокие температуры. Большинство химических реакций с участием органических соединений протекает гораздо медленнее, чем ионные реакции неорганических веществ, что обусловлено природой основной химической связи в органических веществах — ковалентной связью. Углерод, входящий в состав органических веществ, обладает особой способностью соединяться не только с несколькими другими углеродными атомами, но и почти со всеми элементами периодической системы (кроме инертных газов). Следует подчеркнуть, что выход продукта в органической реакции, как правило, ниже, чем при реакции неорганических веществ. Кроме того, в области органической химии приходится сталкиваться с новыми понятиями и явлениями органический радикал, функциональная группа, изомерия и гомология, а также взаимное влияние атомов и атомных групп в молекуле. [c.5]

    Статические условия Газовая смесь реагентов подается в термо-статированныЛ реактор. Если реакция идет с изменением числа молей, то кинетику обычно снимают по изменению давления в системе. Реактор изготовляется из стекла пирекс марки ЗС-5 или плавленого кварца обычно в форме цилиндра или сферы. Для того чтобы свести к минимуму участие стенк.и в рад-икальных реакциях, стенку покрывают пленкой ня гакях веществ, как КС1 или Н3ВО3. Чтобы выяснить, не участвует ли стенка в реакции, проводят опыты в реакторах разного диаметра, формы и вводят в реактор стеклянные трубочки. Скорость гомогенной реакции получают, экстраполируя зависимость Ц/ от к 51 = 0. Температуру внутри реактора измеряют при помощи термопары. Для сведения к минимуму изменения давления в ходе опыта из-за колебаний температуры термостата часто используют дифференциальную схему в термостат помещают вместе с реактором сосуд, наполненный инертным газом, и измеряют изменение давления в реакторе относительно давления в холостом сосуде. [c.271]

    Решение. Из уравнения (VII, 1) следует, что можно использовать нагревание образование реальных растворов для большинства газов также сопровождается выделением тепла (вследствие относительно большой теплоты конденсации). В соответствии с уравнением (VII, 7) можно применить вакуумирование и (или) пропускать инертный газ (на последнем принципе основано выделение газа на твердых пористых веществах, вносимых в раствор). Более эффективно, конечно, сочетание нагревания с вакуумирова-нием, что применяется, например, при плавлении металла в вакууме. [c.179]

    Катализатор очень активен (конверсия олефинов достигает 40 %) и вследствие этого быстро зауглероживается, поэтому процесс проводят циклами длительностью 15 мин цикл дегидрирования и цикл регенерации с промежуточной продувкой инертным газом. Механическая прочность такого катализатора невелика (около 20 Н на таблетку), и во избежание механического разрушения его предварительно смешивают с теплоносителем в массовом соотношении 1 1. Теплоносителем служит плавленая окись алюминия с плотностью около 3 г/см в виде шариков диаметром примерно 5 мм. Применение такого теплоносителя позволяет аккумулировать теплоту, выделяющуюся при регенерации, а затем использовать ее при дегидрировании. [c.143]

    Методика работы. В реакционную колбу (рис. 4,1) помещают 9,5 мл (0,1 моля) диэтилеигликоля, 14,6 г (0,1 моля) адипиновой кислоты и 0,152 г [0,8 моля, т. е. 0,2% (мол.) от смеси] п-толуол-сульфокислоты. Поликонденсацию проводят при 150 и 170 °С. Колбу помещают в предварительно нагретую баню со сплавом Вуда. Перед самым плавлением твердой массы в один из отводов колбы через трубку подают ток инертного газа. Отвод, в который вставлен термометр, служит также и для отбора проб. Пробы отбирают через определенные промежутки времени (см. табл. 4,1). [c.63]

    Методика работы. В трехгорлуй колбу с мешалкой, термометром и прямым холодильником, соединенным с приемником, помещают 15 г /г-фенилендиамина (0,138 моля), 15,2 г гидрохинона (0,138 моля) и нагревают при 220 °С в токе инертного газа до полного плавления. Затем включают мешалку и смесь нагревают при этой температуре 2 ч, после чего смесь нагревают до 250—260 °С и (реакцию продолжают еще 4 ч при атмооф еряом давлении. Полученный полимер очищают экстрагированием в кипящей воде в аппарате Сокслета с последующей сушкой при 100 °С. [c.73]

    Важной аналитической задачей является определение газов кислорода, азота и водорода в металле. Предварительное извлечение газов, например, плавлением металла в вакууме с последующим спектральным анализом газовой смеси обычно не дает хороших результатов. Более надежный метод определения газов непосредственно в металлическом образце с помощью мощного импульсного разряда в атмосфере углекислого газа или инертных газов. Хорошие результаты дает метод извлечения и возбуждения газов в ходе анализа, который обеспечивает наибольшую чувствительность и точность. Анализ ведут в атмосфере инертных газов в закрытых камерах. В мощной дуге (ток 20—30 а) происходит плавление образца, который укрепляют на графитовом электроде. Газы из металла поступают в разряд. Температура дуги между угольными электродами в атмосфере инертного газа оказывается достаточной для возбуждения кислорода и азота. Если температура недостаточна, то сначала сжигают прсбу в дуге, а затем в той же камере зажигают дополнительный более жесткий разряд, в котором возбуждаются газы, извлеченные из образца в атмосферу камеры. [c.257]

    Ниобий—металл, менее ковкий, чем тантал, серо-стального цвета с твердостью чистого железа. Благодаря достаточной ковкости и тягучести он годится для прокатывания в тонкие листы, изготовления проволоки и цельнотянутых труб. В отличие от тантала металлический ниобий при температурах плавления и кипения в вакууме сильно распыляется. Обладает парамагнитными свойствами. При высокой температуре в атмосфере инертного газа ниобий сваривается. Металл, поглотивший некоторое количество газа, делается хрупким. Особенно сильно он поглощает газы в порошкообразном состоянии. Удельная теплоемкость ниобия 0,071 кал1град-г в интервале 20—100° С. [c.305]

    Как видно из приведенных данных, теплоты испарения во асех случаях гораздо больше тёплот плавления. И те, и другие величины возрастают вместе с повышением температур плавления и кипения инертных газов. [c.44]

    Чохральским (рис. 84). Вещество в тигле ] из кварца или специального графита расплавляют с помощью индукционного нагревателя 2. В расплав, нагретый немного выше температуры плавления вещества, загружают затравку в виде небольшого кристалла того же вещества 3. Для лучшего перемешивания расплава затравку вместе со штоком 4, к которому она прикреплена, приводят во вращение со скоростью от 2 до 100 об мин. Когда затравка соприкасается с расплавом и немного оплавится, включают подъемный механизм. При вытягивании затравки на ней нарастает кристалл диаметром, зависящим от степени перегрева расплава, скорости подъема затравки и условий охлаждения твердой фазы.Скорость вытягивания 0,5— 10 мм мин. Меняя параметры, можно менять сечение растущего кристалла. Вытягивание ведут в вакууме или в атмосфере инертного газа. Так как большинство примесей в германии и кремнии имеет К С 1, то при их вытягивании из расплава в верхней части выращенного кристалла будет содержаться меньше примесей, так как они по преимуществу накапливаются в остающейся части расплава и попадают в хвост кристалла. Загрязненную часть кристалла удаляют и всю операцию повторяют несколько раз. Так можно добиться уменьшения концентрации примесей до 10 атомов на 1 см . Для германия это можно считать вполне удовлетворительной степенью очистки. [c.265]

    Исследовано 22 жидких металла. У 16 металлов вблизи точки плавления г находится в интервале от 8 до 9 (металлы подгруппы лития, алюминий, галлий, индий, таллий, железо, кадмий, ртуть, висмут, сурьма, германий, олово). Надо полагать, что в этих простых жидкостях относительно широко распространены фрагменты ОЦК структуры, В пяти случаях (медь, серебро, золото, свинец, цинк) 2 = 11, В этих жидких металлах, видимо, преобладают фрагменты плотноупакованных структур. Если твердая фаза имеет ОЦК структуру, то после плавления координационное число, как правило, сохраняется близким к 8 и нередко остается почти без изменений в больиюм интервале температур, достигающем несколько сот градусов (щелочные металлы, алюминий). Когда твердая фаза в точке плавления не имеет ОЦК структуры, во многих случаях после плавления г 8, Следовательно, строение жидкостей и в этих случаях можно охарактеризовать как ОЦК решетку, содержащую столь большое число дефектов, что дальняя упорядоченность атомов отсутствует. Таковы жидкие инертные газы, олово, алюминий, никель, висмут, германий, сурьма, галлий, индий, кадмий, ртуть. [c.269]

    Межатомные силы притяжения у инертных газов при атмосферном давлении намного слабее, чем у металлов. Форма атомов инертных газов близка к сферической. Здесь при характеристике упаковок ПГУ, ГЦК и ОЦК модель жестких шаров вполне применима. Плавление неона, аргона, криптона и ксенона сопровождается ростом объема на одну и ту же величину (11,5%), причем жидкая фаза имеет структуру, напоминающую ОЦК (2 8), а твердая имеет гранецентрированную кубическую упаковку. Увеличение объема при плавлении этих веществ на 4% больше, чем при аллотропном превращении плотноупа-кованного распределения жестких шаров одинакового размера в более рыхлое распределение ОЦК (см. стр. 272). Избыточные 4% можно отнести за счет возникновения в структуре ОЦК большого числа дефектов, благодаря чему дальняя упорядоченность расположения атомов инертных газов после плавления исчезает. Среднее координаци- [c.277]


Смотреть страницы где упоминается термин Инертного газа плавления: [c.578]    [c.362]    [c.639]    [c.107]    [c.391]    [c.63]    [c.263]    [c.278]    [c.280]    [c.281]    [c.88]    [c.378]   
Препаративная органическая химия (1959) -- [ c.145 ]




ПОИСК





Смотрите так же термины и статьи:

Газы инертные

Инертные плавления

Инертный газ



© 2025 chem21.info Реклама на сайте