Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вакуумирование

    При взрыве сорвало крышку мерника, были деформированы другие аппараты и коммуникации и выбиты стекла в производственном помещении и пункте управления. Взрыв произошел при случайном смешении меланжа (смесь азотной и серной кислот) с органическим растворителем (по всей вероятности, с ацетоном), который оказался в мернике в момент заполнения его меланжем. При подго-товке производства к пуску после длительной консервации оборудование и коммуникации промывали органическим растворителем. После промывки мерник был просушен вакуумированием, однако качество осушки аппарата не было проконтролировано. Через 5 мин после начала заполнения сборника меланжем в соединениях шланга, связывающего сборник с наполнительным трубопроводом, началось обильное выделение окислов азота, после этого последовал взрыв. [c.362]


    Отбор проб воздуха для определения в нем концентрации химических соединений производится чаше всего аспирационным методом, основанным на протягивании известного объема воздуха через поглотительную систему. Соединения улавливаются жидкими или твердыми поглотителями. Аспирация анализируемого воздуха через поглотительные среды производится электроаспираторами ( Малыш , АЭРА, ПРУ-4, МК-1, УЛМК-3, ЛК-1 и др.) и реже вакуум-насосами. Так как приборы с жидким поглотителем основаны на принципе абсорбции, то степень улавливания соединений в них будет зависеть от начальной концентрации соединений в газе. С уменьшением концентрации в отбираемой пробе снижается степень улавливания и увеличивается разница между полученным и истинным значениями. В табл. 2.1 приведены сравнительные данные для жидкостных поглотительных приборов, наиболее часто используемых в промышленной практике. При концентрации химических соединений в газах (например, KF, НС ) > 1000 мг/м степень улавливания в указанных поглотителях составляет 97— 99 %. В этом случае ошибка определения не превышает 0,1—3 %, что вполне допустимо. Применение поглотителей для отбора проб с концентрацией соединений 100 мг/м вызывает сомнение. В этом случае более надежен отбор проб в вакуумированные сосуды (стеклянные, металлические) емкостью 1,5—5 л, заполненные на 0,05— 0,1 жидким поглотителем. Этот метод отбора проб основан на явлении адсорбции химических соединений на стенках сосуда. В результате получасового промывания стенок имеющимся в сосуде жидким поглотителем соединения из газа количественно переходят в жидкий поглотитель. Для повышения чувствительности метода [c.23]

Рис. 16. Схема прибора для вакуумирования катализатора и заполнения его пор водой Рис. 16. <a href="/info/855414">Схема прибора</a> для вакуумирования катализатора и заполнения его пор водой
    Если доступ к сварному шву возможен только с наружной или только с внутренней стороны аппарата, испытание на плотность проводится методом вакуумирования сварных швов. Сварной шов смачивается мыльным раствором. На исследуемый участок накладывается коробка, имеющая по всему периметру уплотнение из губчатой резины. Коробка соединяется с вакуум-насосом, а через смотровое стекло, смонтированное на коробке, или через стенки коробки, если она изготовлена целиком из оргстекла, ведется наблюдение за сварным швом. Наличие мыльных пузырей указывает на дефекты сварки. Этот способ проверки применяется также при контроле сварки отдельных листов крупных резервуаров. [c.141]


    Обеспечив необходимую герметичность в колбе, включают вакуум-насос и вакуумируют колбу при остаточном давлении 5—6 мм рт. ст. в течение 20—30 мин. Время вакуумирования можно сократить, если колбу с катализатором подогреть до 350—400° С. [c.46]

    Термохимическое рафинирование — термотехнологический процесс получения металлов обработкой расплавленных черновых металлов с помощью различных присадок (солей, шлаков), окислением примесей, вакуумированием расплава и т. д. Этим способом получают медь, цинк, кадмий, олово, сурьму, ртуть и т. д. [c.41]

    Считается, что тренировка поверхности катализатора при адсорбции из растворов меиее важна, чем при адсорбции газов. Поэтому обычно обходятся без предварительного вакуумирования. [c.87]

    ПОДЛОЖКОЙ. Некоторые газы и пары (особенно водяной пар), сорбированные гидрофильной пористой подложкой, трудно удаляются с помощью вакуумирования и остаются в системе, вызывая неконтролируемые эффекты в процессе плазменной полимеризации. [c.81]

    В газоразрядных лампах используется излучение положительного столба низкого давления или непосредственно, или путем последующего возбуждения флуоресценции ультрафиолетовым излучением (люминесцентные лампы). В натриевых и ртутных лампах в качестве источника света используется дуга с горячим катодом, которая зажигается в парах указанных элементов. Величина давления в лампе определяется ее рабочей температурой, поэтому вакуумный объем, в котором происходит разряд, термически изолируют, заключая лампу в еще один вакуумированный стеклянный баллон. Лампы работают на переменном токе, и поэтому каждый электрод снабжен термоэлектронным эмиттером электронов в виде слоя оксида. Зажигание и разогрев лампы происходят под воздействием высоковольтных импульсов, вырабатываемых при размыкании индуктивной цепи или при введении дополнительного газа (неона). [c.94]

    В технологии используются режимы вакуумирования и другие, не дающие эффективного результата. Необходимо осуществить поток газа из капилляров и встречный поток жидкости, замещающий в них газ. Этого можно достигнуть, придав жидкости характер струй, направленных внутрь тела и не перекрывающих полностью их сечения. Подобные струи в результате кумуляции образуются на капиллярных менисках при выходе ка них фронта ударной волны. [c.131]

    Влияние на фазовый переход могут оказать внутренние источники тепла, создаваемые инфракрасными лучами (радиационная сушка) и электромагнитными колебаниями (ТВЧ- и СВЧ-сушка), а также ультразвук (акустическая сушка) и вакуумирование (сублимационная сушка). [c.161]

    Реактор недостаточно вакуумирован 0,0015 Нечистый азот в линии [c.170]

    В качестве возможных компонентов судовых высоковязких топлив были выбраны остатки прямой перегонки нефти мазуты (М3), гудроны из смеси сернистых западносибирских (ГЗ) и высокосернистой арланской (ГА) нефтей и асфальтиты (А) процесса деасфальтизации гудронов, а также остатки вторичных процессов крекинг-ос-татки процесса висбрекинга гудронов тех же западносибирских (КЗ) и арланской (КА) нефтей, утяжеленный вакуумной перегонкой крекинг-остаток из остаточного сырья - вакуумированный крекинг-остаток (ВКО) и крекинг-остаток из дистиллятного сырья - дистиллят-ный крекинг-остаток (ДКО). [c.48]

    Коррозионные свойства тяжелых остаточных компонентов судового высоковязкого топлива вакуумированного крекинга-остатка-ВКО, асфальта А и арланского гудрона - ГА не исследовались из-за неполного отмывания металлических шариков от этих нефтепродуктов. [c.97]

    Прибор имеет вертикальную кипятильную трубку 3 с внутренним диаметром 34 мм и длиной 500 мм. Регулируемое нагревание жидкости обеспечивается снизу электрической свечой И, размещенной в углублении 10. Наружные стенки углубления для усиления парообразования покрыты наплавленным стеклянным порошком. С помощью колпака 12, доходящего почти до дна, все образующиеся пузырьки пара собираются, смешиваются с жидкостью и направляются в разбрызгивающую трубку 9 диаметром 4 мм, где происходит дополнительное перемешивание в двух шарообразных расширениях. Затем смесь через конец 7 трубки 9 в виде брызг попадает на карман 6 термометра. Разбрызгивающая трубка в.месте с шариками окружена вакуумированной рубашкой 8. Отделившаяся от пара жидкость стекает с кармана термометра и через узкую кольцевую щель между рубашкой 8 и кипятильной трубкой 3 возвращается в цикл. Кончик термометра погружен в небольшое количество ртути и защищен карманом 6 с припаянным [c.56]

    Прозрачность стекла позволяет наблюдать за ходом процесса. В адиабатических процессах, протекающих при температурах примерно до 120 °С, кожух из стекла, вакуумированный до остаточного давления 10 мм рт. ст., обеспечивает достаточную термоизоляцию аппарата. При более высоких температурах, а также при использовании крупногабаритных аппаратов в качестве термоизоляционного материала применяют стекловолокно в слое изоляции оставляют смотровую щель, предназначенную для визуального наблюдения за ходом процесса (см. разд. 7.7). Важным преимуществом стекла является его высокая коррозионная стойкость. Поэтому многие химические реакции и процессы разделения проводят в аппаратах и установках, изготовленных из стекла или других керамических материалов. Широкому применению стекла в химической промышленности способствует высокая твердость и незначительная шероховатость поверхности стеклянных изделий. Стенки стеклянных аппаратов во время работы незначительно загрязняются и легко поддаются очистке. Ценным свойством стекла является также сравнительно небольшой коэффициент линейного расширения. Использование стеклянных аппаратов при переработке фармацевтических продуктов и однократной или двойной перегонке воды дает возможность получать продукты без запаха, вкуса й, главное, без примесей металлов. [c.325]


    Юнге [233] провел измерения тепловых потерь в колонне с вакуумированной рубашкой и в колонне с тепловой изоляцией из стекловолокна толщиной 50 мм. Результаты этих исследований в зависимости от температуры внутри колонны приведены на рис. 111 на рисунке представлены также данные Роуза [153], взятые из табл. 32. [c.178]

    Дефлегматор представляет собой сосуд с изолирующей вакуумированной рубашкой, который предназначен для загрузки [c.250]

    Харрис [125] разработал удобную номограмму (рис. 187), с помощью которой можно определить размеры вакуумных линий и производительность насоса. При разработке номограммы предполагалось, что скорость вакуумирования изменяется не более чем на 30%. [c.265]

    Пример I Пример 2 р — давление в вакуумированном сосуде, [c.266]

    СКОЛЬКО СОТ калорий на 1 люль. При хемосорбции тепловые эффекты по величине приближаются к тепловым эффектам химических реакций и составляют41 900—419000 кдж/кмоль (10—100 ккал/моль). Так, например, теплота адсорбции кислорода на углероде равна 335 200 кдж/кмоль (около 80 ккал/моль), а теплота сгорания углерода составляет 393860 кдж/моль ккал/моль). В этом случае действительно образуется стабильное соединение и при попытках удалить адсорбат с поверхности путем вакуумирования вместе с кислородом выделяется некоторое количество окиси углерода. [c.205]

    При иогружепии вакуумированного катализатора в смачивающую жидкость выделяется тепло, количество которого пропорциопалыю величине поверхности навески  [c.86]

    Образцы окисленного и остаточного битумов с примерно равной консистенцией после предварительного вакуумирования выдерживались при повышенных температурах. Чтобы обеспечить равную скорость газообразомния для обоих битумов, температуру окисленного битума меняли в пределах 240—287°С, а остаточного — 272—341°С продолжительность нагрева составляла 32 и 19 ч соответственно. В результате термической обработки оба образца стали более жидкими, состав выделенных при этом газов (мл в нормальных условиях на 1 кг битума) был разным  [c.19]

Рис. 1. Инфракрасные спектры цеолитов после вакуумпрования при. ТЗ ), 673 (2), 773 (3), 673 К, а таки е цеолита, обработанного пиридином и вакуумированного при Рис. 1. <a href="/info/97737">Инфракрасные спектры</a> цеолитов после вакуумпрования при. ТЗ ), 673 (2), 773 (3), 673 К, а таки е цеолита, обработанного пиридином и вакуумированного при
    Кроме того, в рабочий объем трубки 3 вводится вакууми-рованная трубка для отбора пробы продуктов реакции. В зависимости от направления потока кислородсодержащего газа вакуумирован ную трубку можно помещать в любую интересующую нас точку. [c.54]

    Спектр катализатора МдСг Оуу - AI Oj после 3 часов тренировки в кислороде с последующим вакуумированием при 400 С аналогичен спектру образца, тренированного в вакууме. Однако после адсорбции [c.119]

    Иногда проводят бестигельную зонную плавку тугоплавких веществ. Ес применяют, если нельзя подобрать материал для лодочки не реагирующий с расплавом. В данном методе пруток очищаемого материала располагают верти- кально в вакуумированной камере и создают расплавленную зону с помощью электронного луча. Жидкость удерживает от стекания поверхностное натяжение расплава. [c.380]

    В сосуде при 273 К и 1,01 10 Па находится 10 моль одноатом- юго газа в идеальном состоянии. Рассчитайте конечную температуру, давление газа и работу процесса расширения газа до объема, в дьз раза превышающего первоначальный а) при медленном изотермическом расширении в цилиндре с поршнем, двигающемся без трения б) п])И адиабатическом расширении в аналогичных условиях в) при мгновенном удалении перегородки между сосудом и вакуумированным просгранством того же объема. Объясните различие результатов, полученных в трех процессах. [c.58]

    Великолепные свойства жестких и эластичных пенополиуретанов, а также вспененных эпоксидных смол и некоторых других реактопластов обратили на себя внимание многих фирм США ио выпуску оборудования для переработки пластмасс. Отличительной чертой переработки этих материалов является их ограниченная жизнеспособность , чем, в свою очередь, определяются конструктивные особенности оборудования [234]. Смешивание ингредиентов осуществляется, главным образом, в аппаратах непрерывного действия. Применяемое мешалки отличаются относительно простой конструкцией. Рабочие скорости их весьма велики и достигают 5 тыс. об/мин. Оборудование для формования пенополиуретанов фирмы выпускают в виде комплексных агрегатов, содержаигих устройства для перемешивания компонентов, транспортировки смеси и формования. Можно отметить два основных типа агрегатов для переработки пенополиуретана — это машины для формования блоков и изделий и устройства для нанесения покрытий. Формование блоков может осуществляться как в индивидуальных формах, так и непрерывно (в нескольких формах). При непрерывном получении пенополиуретановых блоков исходные компоненты подаются в цилиндрическую смесительную камеру, из которой через щелевой канал смесь поступает на непрерывно движущийся бумажный короб. При перемещении вместе с коробом смесь подвергается тепловому воздействию и вакуумированию в специальных камерах, при выходе из которых смесь оказывается полностью отвержденной. Производительность описанной установки достигает 75 кг мин плотность конечного продукта— 24 кг/м , максимальная ширина листов — 2 м. Непрерывное производство позволяет значительно улучшить качество готового продукта и стабилизировать его свойства. [c.194]

    Наблюдение с помощью лупы за подсвеченной сзади шкалой термометра и подсчет десятичных делений шкалы через пленку конденсата и не представляет трудностей, если верхнюю часть эбуллиоскопа предварительно протравить в течение 2мин 1%-ной фтористоводородной кислотой и затем прокипятить в мыльной воде. Кипятильная трубка 3 до самого конденсатора 2 окружена изолирующим слоем стекловолокна 4, в котором оставлена узкая смотровая щель. Под теплоизоляцией 4 на трубку 3 намотана спираль компенсационного электрообогрева 5, выполненная из тонкой проволоки. Мощность обогрева можно рассчитывать, условно представляя спираль в виде охватывающей прибор бесконечно длинной цилиндрической оболочки с равномерно распределенными источниками тепла. Электрообогрев регулируют с помощью амперметров и калибровочной кривой таким образом, чтобы без включения системы подогрева кубовой жидкости приближенно устанавливалась ожидаемая температура. В этом случае даже ттары труднолетучих веществ доходят до конденсатора, расположенного на 250 мм выше кармана термометра. Адиабатический режим в разбрызгивающей трубке обеспечивается четырехкратной защитной системой, включающей вакуумированную рубашку, слой нагретой до кипения жидкости, стекающей в кольцевой щели, спираль компенсационного электрообогрева и слой теплоизоляции. Через штуцер 1 обычно загружают жидкость, а при работе под вакуумом к нему присоединяют вакуумную линию. [c.57]

    Очень изящный метод, однако обеспечивающий точность измерения всего лишь =tO,5 мм рт. ст., описан Нательсоном и Цукерманом [36]. Он основан на том явлении, что капля жидкости, висящая на конце вертикального капилляра (трубки термометра), в результате постепенного вакуумирования окружающего пространства отрывается от капилляра. В момент отрыва капли считывают показание ртутного манометра, соответствующее достигнутому давлению. [c.58]

    Паровая камера 7 и насос Коттрелля 4 в усовершенствованном приборе, показанном на рис. 49, с целью исключения частичной конденсации паров, помещены в вакуумированную рубашку 12. Наружная стенка вакуумированной рубашки поддерживается при температуре кипения смеси с помощью циркуляционного термостата. [c.89]

    В отличие от полых трубок (см. разд. 7.3.1) колонна Вигре обладает большей орошаемой поверхностью за счет большого числа заостренных глубоких вмятин, кроме того в средней части она имеет ввод для питающей смеси. Шрадер и Рицер 15] использовали такую колонну в качестве дефлегматора в приборе для микроперегонки (рис. 129). Он содержит плоскодонную колбу 1, которая обеспечивает постоянную поверхность испарения, и приемник 3 со стеклянными трубками 2 емкостью 0,1 мл. Дистиллят стекает к трубкам 2 по стеклянной нити 4. Разумеется, прибор можно применять только для разделения высококипяищх веществ, так как в нем не предусмотрен водяной холодильник. Более вместительный прибор Кленка [6] также имеет только воздушное охлаждение (рис. 130). Колонка длиной 8,5 или 13 см со спиральной металлической лентой длиной 120 мм и вакуумированной рубашкой обеспечивает хорошее разделение при очень малом количестве смеси. [c.199]

    Перед проведением ректификации проверяют качество герметичности кожуха колонны с помощью высокочастотного течеиска-теля. При герметичности кожуха (в затемненном рабочем помещении) в его полости не должно возникать свечения, возможна зеленая флюоресценция стеклянных стенок кожуха. Если возникает свечение, проводят повторное вакуумирование. Для этого используют трехступенчатый диффузионный ртутный насос. Пары ртути вымораживают в глубокоохлаждаемом адсорбере с активным углем или силикагелем, установленном между насосом и колонной. Для смазки кранов применяют высоковакуумную смазку (см. разд. 9.4). При достижении высокого вакуума, соответствующего остаточному давлению 10" мм рт. ст. и ниже, кран закрывают. [c.252]

    После сборки вакуумной установки необходимо испытать ее на герметичность. Сначала проверяют вакуум, создаваемый насосом, путем присоединения его к буферной ёмкости на 5—10 л. Затем проверяют герметичность кранов, шлифовых соединений и мест спаев. Целесообразно размещать краны или клапаны на установке таким образом, чтобы можно было отдельно испытать на герметичность различные ее части. Для проверки герметичности применяют высокочастотный течеискатель типа Тесла с электродом в виде щетки (рис. 191). Принцип работы прибора основан на возникновении искры от электрода в месте пропускания воздуха. Можно также проверить герметичность аппарата с помощью стетоскопа или смазать предполагаемые места пропусков мыльным раствором и создать в установке избыточное давление около 0,5 кгс/см . Изящный метод проверки герметичности состоит в том, что на поверхность вакуумированной установки наносят кисточкой слабощелочной раствор флоуресцина или эозина в метаноле, затем ее облучают в темноте ультрафиолетовым светом, при этом в герметичных местах будет отчетливо наблюдаться флуоресценция. Специальные методы испытаний установок, работающих в условиях высокого вакуума, описаны Лаппорте [119] и Мён-хом [126]. [c.268]

    Подогретую исходную смесь непрерывно с определенной скоростью впрыскивают в вакуумированную колбу 8. При этом жидкость распределяется по стенкам колбы в виде тонкой пленки. В результате дополнительного разрежения при впрыскивании низкокипящая фракция сразу же испаряется. Пленка, образованная на нагретых стенках колбы, имеет большую поверхность испарения, поэтому в течение небольшого периода времени испа- [c.269]

    Колонну с елочным дефлегматором обычно изготавливают со съемным теплоизоляционным кожухом, а колонну Янцена — с вакуумированным кожухом. Для всех безнасадочных колонн важно поддерживать в ходе ректификации температуру стенки ниже температуры стекающей флегмы, так как в противном случае нарушается равномерное образование пленки на поверхности стенки. Следует отметить, что эффективность безнасадочных колонн возрастает при уменьшении нагрузки. Используя многотрубчатые колонны, состоящие из параллельно соединенных труб небольшого диаметра, можно получить любую необходимую производительность. Подобную многотрубчатую колонну еще в 1936 г. запатентовал Фенске [201. [c.338]

    Штаге [35 ] предложил для непрерывных процессов разделения лабораторные и промышленные колонны с колпачковыми тарелками, предназначенные для работы в широком интервале нагрузки по жидкости. Эффективность этих колонн не зависит от нагрузки по жидкости и соотношения нагрузок паровой и жидкой фаз, а также от кратковременных нарушений технологического режима процесса. В лабораторных установках широко применяют тарельчатые колонны Брууна [37] (рис. 262). По конструктивному выполнению они приближаются к промышленным колоннам с колпачковыми тарелками. Их недостаток заключается в том, что переточ-ные трубы для флегмы размещены снаружи колонны, и это может приводить к значительному переохлаждению жидкости. Степень охлаждения можно уменьшить, поместив колонну в заполненный воздухом или вакуумированный кожух (рис. 263). Трубы для подвода 1 и отвода 3 жидкости (см. рис. 262) расположены таким об- [c.346]


Смотреть страницы где упоминается термин Вакуумирование: [c.298]    [c.57]    [c.131]    [c.35]    [c.199]    [c.26]    [c.88]    [c.178]    [c.261]    [c.266]    [c.338]    [c.343]   
Смотреть главы в:

Анорганикум. Т.2 -> Вакуумирование

Общий курс процессов и аппаратов химической технологии -> Вакуумирование


Газовая экстракция в хроматографическом анализе (1982) -- [ c.159 ]

Химия справочное руководство (1975) -- [ c.536 ]

Справочная книга механика по ремонту домашних холодильников _1971 (1971) -- [ c.110 , c.189 ]

Химия и технология ферритов (1983) -- [ c.219 , c.222 ]

Краткая химическая энциклопедия Том 1 (1961) -- [ c.504 ]




ПОИСК







© 2025 chem21.info Реклама на сайте