Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Обмен электронами при гомогенном катализе

    Сделаны первые попытки создания радикально-цепной теории, основанной на трактовке активных центров как свободных валентностей [58, 2] и на механизмах полупроводникового катализа. Влияние контактных реакций на орто-шра-превращение водорода и изотопный обмен целыми радикалами при этих реакциях [59] указывают на существование лабильных радикалов или радикалоподобных форм при классическом органическом ка-та лизе. В то же время делается очевидным, что как и в гомогенном катализе, в жидкостях в качестве отправного элементарного акта чаще, чем образование обычных ковалентных связей и переход электронов, происходит образование лабильных комплексов присоединения со всем широким набором химических связей, встречающихся в электронной химии лигандов и твердых тел. Дальнейшая конкретизация структуры и свойств этих соединений и изучение закономерностей химии двухмерных поверхностных координационных соединений — задача ближайшего времени. Вторая актуальная задача — установление роли свободных радикалов и цепных реакций в осуще- [c.511]


    Однако в большинстве случаев увеличение скорости реакции, наблюдаемое в присутствии катализатора, связано с уменьшением энергии активации Е данной реакции. Для того чтобы это имело место, катализатор должен изменить свойства молекул одного из реагирующих веществ, вступив с ним в химическое соединение. При гомогенном катализе происходит либо взаимодействие катализатора с одним из реагирующих веществ с образованием молекулярного соединения, либо обмен электроном между катализатором и той молекулой, на которую он оказывает свое влияние. При гетерогенном катализе происходят сходные явления. Когда молекула одного из реагирующих веществ [c.19]

    Так же, как и в гомогенном катализе, окислительно-восстановительные реакции (окисление, восстановление, гидрирование и дегидрирование) характеризуются электронным обменом между реагентами и катализатором. [c.172]

    Прн гомогенном катализе, когда катализатор находится в одной фазе (газовой или жидкой) с реагирующими веществами, промежуточное соединение А [Кат может существовать в виде отдельного компонента, который можно обнаружить химическим анализом. При гетерогенном катализе, когда, например, твердый катализатор находится в жидкой или газовой фазе, включающей реагирующие вещества А и В, промежуточное вещество А [Кат] не является трехмерным телом, которое можно определить химическим анализом. А [Кат] в этом случае является лишь поверхностным соединением (продуктом активированной адсорбции). Однако и в этом случае между катализатором и реагирующими веществами происходит электронный или протонный обмен, т. е. имеется химическая валентная связь. Поэтому катализаторы действуют специфично, т. е. избирательно ускоряют одни реакции и не влияют на скорость других. [c.138]

    Сборник статей исследования по изучению глубокого механизма катализа простых и сложных реакций в газовой и жидкой фазе с помощью новых экспериментальных методов (спектральных, микроволновых, электронных, изотопных и т. Д.), а также обобщение работ по теории простых и сложных процессов. Особое внимание уделено синтезу аммиака, гидрированию и дегидрированию, полимеризации, изотопному обмену. Отдельные статьи посвящены гомогенному катализу, комплексным соединениям и координационным механизмам в гетерогенном катализе. [c.2]


    Осн. научные работы — в области хим. кинетики и катализа. Обнаружил новый тип хим, превращений в ТВ. телах — туннельные реакции переноса электрона на большие расстояния. Изучал спиновый обмен -- физ. процесс, моделирующий хим. Р-1ЩИ. Развил ряд сопрем, физ, методов исследования катализа (ЭПР, ЯМР, спектроскопия дальней тонкой структуры рентгеновских спектров поглощения), Обнаружил и исследовал активные промежуточные комплексы для ряда гомогенных каталитических р-ций. Выяснил особенности строения хим. центров на поверхности ряда важных гетерогенных катализаторов. Внес существенный вклад в разработку каталитических методов преобразования солнечной энергии. [c.171]

    Механизм гомогенной реакции А А + S может быть различным. Если редокс-пара А/А выполняет только функцию переносчика электронов, то имеют дело с редокс-катализом или с го-момедиаторной системой. В этом случае обмен электронами между А и S происходит по внешнесферному механизму. Если же в хо е реакции медиатор одновременно связывает субстрат в аддукт А S, который затем распадается с регенерацией А, то имеют дело с химическим катализом или с гетеромедиаторной системой. В случае химического катализа перенос электронов, как правило, осуществляется по внутрисферному механизму. [c.477]

    Доуден и Уэллс впервые выдвинули представление о хемосорбции как образовании комплекса между координирующим атомом поверхности и адсорбатом в качестве лиганда. Соответственно в реакциях, лимитируемых стадиями адсорбции или десорбции, в результате энергии стабилизации кристаллическим полем следует ожидать минимума скоростей реакций для ионов с (1°, и оболочками в слабом поле и с и оболочками в сильном поле. Максимальной активностью должны обладать ионы с и а — оболочками в слабом поле. Действительно, двухпиковая активность наблюдалась для ряда реакций (Нг — Ог обмен, диспропорциони-рование циклогексена, дегидрирование пропана и др.) для СггОз, С03О4 и N 0. Однако такая зависимость отнюдь не универсальна, и одной из причин этого является непригодность схемы двухпиковой активности для хемосорбции через стадию образования л-комплекса. Киселев и Крылов [38] тоже трактуют акт адсорбции как процесс поверхностного комплексообразования, создания до-норно-акцепторной связи затягиванием неподеленной пары электронов адсорбата-лиганда па внутренние орбитали атома решетки, являющегося центром адсорбции и играющего роль ядра комплекса. Крылов, основываясь на данных современных физических методов исследования твердой поверхности при адсорбции и каталитических реакциях, приходит к заключению об идентичности в ряде случаев структуры промежуточных комплексов в гетерогенном и гомогенном катализе, протекающем на одних и тех же ионах переходных металлов. Это подтверждает роль координационного взаимодействия как одного из механизмов гетерогенного катализа. Квантово-химическое обоснование такого механизма дано в работе [10]. [c.35]

    Основные научные работы в области химической кинетики и катализа. Обнаружил новый тип химических превращений в твердых телах — туннельные реакции переноса электрона на больщие расстояния. Изучал спиновый обмен— физический процесс, моделирующий химические реакции. Разработал метод измерения межатомных расстояний в парамагнитных ме-таллокомилексах. Обнаружил и исследовал активные промежуточные комплексы в ряде важных гомогенно-каталитических реакций. [c.196]

    Основные научные исследования — в области кинетики и механизма химических реакций, а также гомогенного и металлокомплексного катализа. Совместно с Я. Я. Семеновым открыл (1963) новый тип разветвленных цепных реакций с энергетическими разветвлениями в основном на примере фторирования водорода и органических соединений в газовой фазе. Открыл (1966—1970) новые реакции молекулярного азота (образование комплексов с соединениями металлов, каталитическое восстановление до гидразина и аммиака в водных и спиртовых растворах). Открыл (1969) совместно с сотрудниками реакции алканов в растворах комплексов металлов (изотопный обмен, окисление, платинирование ароматических и алифатических углеводородов). Разработал (с 1977) ряд систем, способных к фотокаталитическому образованию водорода и кислорода из воды с участием соответственно доноров и акцепторов электрона, фотосенсибилизаторов и катализаторов. Сформулировал принцип много-электронных превращений в координационной сфере металла в ме-таллокомилексном катализе. [c.616]


Смотреть страницы где упоминается термин Обмен электронами при гомогенном катализе: [c.241]    [c.241]   
Перекись водорода (1958) -- [ c.395 ]




ПОИСК





Смотрите так же термины и статьи:

Гомогенный катализ Катализ

Дву электронные обмены при

Катализ гомогенный

Электроны обмен



© 2025 chem21.info Реклама на сайте